Skip to main content

Abstract

Nanoparticles (NPs) are being extensively used in the field of nanomedicines. Different types of NPs are administered into the body by various routes. NPs come in contact with cells inside the body. Cellular response of NPs is affected by size, shape, surface chemistry, and cellular uptake pathways of NPs. In addition to this, type of cells, various cell lines, and growth media are also found to affect the cellular response of NPs. NPs induce diverse cellular responses like apoptosis, necrosis, and reactive oxygen species (ROS) production. NPs also form a protein corona inside the biological media which may alter their identity and behaviour as compared to bare NPs. In this chapter, we have made an attempt to throw light on cellular uptake pathways of NPs, monitoring of endocytic pathways followed by NPs, factors affecting cellular responses of therapeutic NPs, and protein corona formation, characterisation and its implications on fate of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Mattsson K, Rissler J et al (2015) Analysis of nanoparticle—protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology 1–9

    Google Scholar 

  • Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  PubMed  Google Scholar 

  • Alshaer W, Hillaireau H, Vergnaud J et al (2015) Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjugate Chem 26:1307–1313

    Article  CAS  Google Scholar 

  • Arias MA, Loxley A, Eatmon C et al (2011) Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine 29:1258–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Jain J, Rajwade JM et al (2008) Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100

    Article  CAS  PubMed  Google Scholar 

  • Asokan A, Cho MJ (2002) Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci 91:903–913

    Article  CAS  PubMed  Google Scholar 

  • Ataman-Önal Y, Munier S, Ganée A et al (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Rel 112:175–185

    Article  CAS  Google Scholar 

  • Bao G, Bao XR (2005) Shedding light on the dynamics of endocytosis and viral budding. Proc Natl Acad Sci USA 102:9997–9998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett DW, Davis ME (2007) Physicochemical and biological characterization of targeted nucleic acid-containing nanoparticles. Bioconjugate Chem 18:456–468

    Article  CAS  Google Scholar 

  • Bartneck M, Keul HA, Singh S et al (2010) Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4:3073–3086

    Article  CAS  PubMed  Google Scholar 

  • Bastus NG, Sanchez-Tillo E, Pujals S et al (2009) Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Benmerah A, Lamaze C (2007) Clathrin-coated Pits: Vive la Difference? Traffic 8:970–982

    Article  CAS  PubMed  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102:11539–11544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blunk T, Hochstrasser DF, Sanchez JC et al (1993) Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301

    Google Scholar 

  • Cambi A, Lidke DS, Arndt-Jovin DJ et al (2007) Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nanolett 7:970–977

    Article  CAS  Google Scholar 

  • Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Foy M et al (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S et al (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Jallouli Y, Kroubi M et al (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379:285–292

    Article  CAS  PubMed  Google Scholar 

  • Chellat F, Grandjean-Laquerriere A, Le Naour R et al (2005) Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26:961–970

    Article  CAS  PubMed  Google Scholar 

  • Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  CAS  PubMed  Google Scholar 

  • Cölfen H (2004) Analytical ultracentrifugation of nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol. 1. American Scientific Publishers, Stevenson Ranch, pp 67–88

    Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  PubMed  Google Scholar 

  • Dausend J, Musyanovych A, Dass M et al (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • De M, You CC, Srivastava S et al (2007) Biomimetic interactions of proteins with functionalized nanoparticles: A thermodynamic study. J Am Chem Soc 129:10747–10753

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Mortimer G, Schiller T et al (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101

    Article  PubMed  CAS  Google Scholar 

  • Diken M, Kreiter S, Selmi A et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708

    Article  CAS  PubMed  Google Scholar 

  • Dinauer N, Balthasar S, Weber C et al (2005) Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 26:5898–5906

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Zheng J et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–117

    Article  CAS  Google Scholar 

  • Duit S, Mayer H, Blake SM et al (2010) Differential functions of ApoER2 and very low density lipoprotein receptor in Reelin signaling depend on differential sorting of the receptors. J Biol Chem 285:4896–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer Diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed IH, Huang XH, El-Sayed MA (2006) Photo-Thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135

    Article  CAS  PubMed  Google Scholar 

  • Foroozandeh P, Aziz AA (2015) Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res Lett 10:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garnier B, Bouter A, Gounou C et al (2009) Annexin A5-Functionalized liposomes for targeting phosphatidylserine-exposing membranes. Bioconjugate Chem 20:2114–2122

    Article  CAS  Google Scholar 

  • Gaspar R (2013) Nanoparticles pushed off target with proteins. Nature Nanotech 8:79–80

    Article  CAS  Google Scholar 

  • Ge C, Du J, Zhao L et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108:16968–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner A, Lieske A, Paulke B et al (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170

    Article  CAS  PubMed  Google Scholar 

  • Grass S, Treuel L (2014) Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces. J Nanopart Res 16:2254–2265

    Article  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S et al (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32

    Article  CAS  PubMed  Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC et al (1991) Matrix-assisted laser desorption/ionization MS of biopolymers. Anal Chem 63:1193–1202

    Article  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong T, Tripathy N, Son H et al (2013) A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J Mater Chem B 1:2985–2992

    Article  CAS  Google Scholar 

  • Hu CM, Kaushal S, Tran Cao HS et al (2010) Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 7:914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Butler PJ, Tong S et al (2013) Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett 13:1611–1615

    CAS  PubMed  Google Scholar 

  • Hung A, Mwenifumbo S, Mager M et al (2011) Ordering surfaces on the nanoscale: implications for protein adsorption. J Am Chem Soc 133:1438–1450

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Kim BY, Rutka JT et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Kannan S, Wu M et al (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Jin CY, Zhu BS, Wang XF et al (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877

    Article  CAS  PubMed  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AT, Gumbleton M, Duncan R (2003) Understanding endocytic pathways and intracellular trafficking. A prerequisite for effective design of advanced drug delivery systems. Adv Drug Deliv Rev 55:1353–1357

    Article  CAS  PubMed  Google Scholar 

  • Jun YW, Huh YM, Choi JS et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733

    Article  CAS  PubMed  Google Scholar 

  • Kengne-Momo RP, Daniel P, Lagarde F et al (2012) Protein interactions investigated by the raman spectroscopy for biosensor applications. Int J Spectroscopy 2012: Article ID 462901, 7 pages. doi:10.1155/2012/462901

    Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  CAS  PubMed  Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomed Nanotechnol Biol Med 1:193–212

    Article  CAS  Google Scholar 

  • Krpetic Z, Singh I, Su W et al (2012) Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. J Am Chem Soc 134:8356–8359

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kumari A, Guleria P et al (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contamin Toxicol 215:40–112

    Google Scholar 

  • Kumari A, Yadav SK (2011) Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv 8:141–151

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Choi Y, Kim K et al (2010) Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. Bioconj Chem 21:940–946

    Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MP et al (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857

    Google Scholar 

  • Lindman S, Lynch I, Thulin E et al (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920

    Google Scholar 

  • Liu AP, Aguet F, Danuser G et al (2010a) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XQ, Song WJ, Sun TM et al (2010b) Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm 8:250–259

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Huang N, Li H et al (2013) Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29:9138–9148

    Article  CAS  PubMed  Google Scholar 

  • Luccardini C, Yakovlev A, Gaillard S et al (2007) Intracellular uses of colloidal semiconductor nanocrystals. J Biomed Biotechnol 2007:1–9

    Article  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunov O, Syrovets T, Loos C et al (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669

    Article  CAS  PubMed  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  • Machtle W (1999) High-Resolution submicron particle size distribution analysis using gravitational-sweep sedimentation. Biophys J 76:1080–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffre P, Nienhaus K, Amin F et al (2011) Characterization of protein adsorption onto Fept nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendra S, Zhu HG, Colvin VL et al (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M (2009) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580

    Article  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M et al (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloid Surf B 75:300–309

    Article  CAS  Google Scholar 

  • Mahmoudi M, Lynch I, Ejtehadi MR et al (2011a) Protein nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Sant S, Wang B et al (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Delivery Rev 63:24–46

    Article  CAS  Google Scholar 

  • Mailänder V, Lorenz MR, Holzapfel V et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10:138–146

    Article  PubMed  Google Scholar 

  • Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  CAS  PubMed  Google Scholar 

  • Makarucha J, Todorova N, Yarovsky I (2011) Nanomaterials in biological environment: a review of computer modelling studies. Eur Biophys J 40:103–115

    Article  CAS  PubMed  Google Scholar 

  • Marvina LF, Robertsb MA, Faya LB (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 337:11–21

    Article  CAS  Google Scholar 

  • Massich MD, Giljohann DA, Seferos DS et al (2009) Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm 6:1934–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massich MD, Giljohann DA, Schmucker AL et al (2010) Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano 4:5641–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373

    Article  CAS  PubMed  Google Scholar 

  • Medina-Kauwe LK (2007) “Alternative” endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery? Adv Drug Del Rev 59:798–809

    Article  CAS  Google Scholar 

  • Milani S, Bombelli FB, Pitek AS et al (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano 6:2532–2541

    Article  CAS  PubMed  Google Scholar 

  • Miller CR, Bondurant B, McLean SD et al (1998) Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37:12875–12883

    Article  CAS  PubMed  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  • Mortimer GM, Butcher NJ, Musumeci AW et al (2014) Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano 8:3357–3366

    Article  CAS  PubMed  Google Scholar 

  • Müller HG (2004) Determination of very broad particle size distributions via interferences optics in the analytical ultracentrifuge. Prog Colloid Polym Sci 127:9–13

    Google Scholar 

  • Müller HG (2006) Determination of particle size distributions of swollen (Hydrated) particles by analytical ultracentrifugation. Prog Colloid Polym Sci 131:121–125

    Article  CAS  Google Scholar 

  • Nagayama S, Ogawara K, Fukuoka Y et al (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342:215–221

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ono K, Suzuki Y et al (2014) Octaarginine-modified liposomes enhance cross-presentation by promoting the C-terminal trimming of antigen peptide. Mol Pharm 11:2787–2795

    Article  CAS  PubMed  Google Scholar 

  • Nan A, Bai X, Son SJ et al (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8:2150–2154

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–547

    Article  CAS  PubMed  Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Rel 114:343–347

    Article  CAS  Google Scholar 

  • Nishikawa T, Iwakiri N, Kaneko Y et al (2009) Nitric oxide release in human aortic endothelial cells mediated by delivery of amphiphilic polysiloxane nanoparticles to caveolae. Biomacromolecules 10:2074–2085

    Article  CAS  PubMed  Google Scholar 

  • Norde W (1994) Protein adsorption at solid surfaces: A thermodynamic approach. Pure Appl Chem 66:491–496

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Delehanty JB, Sapsford KE et al (2011) Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5:6434–6448

    Article  CAS  PubMed  Google Scholar 

  • Parak WJ, Pellegrino T, Plank C (2005) Labelling of Cells with Quantum Dots. Nanotechnol 16:R9–R25

    Article  CAS  Google Scholar 

  • Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    Article  CAS  PubMed  Google Scholar 

  • Patra HK, Banerjee S, Chaudhuri U et al (2007) Cell selective response to gold nanoparticles. Medicine 3:111–119

    CAS  Google Scholar 

  • Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    Article  CAS  PubMed  Google Scholar 

  • Peng L, He M, Chen B et al (2015) Metallomics study of CdSe/ZnS quantum dots in HepG2 Cells. ACS Nano 9:10324–10334

    Article  CAS  PubMed  Google Scholar 

  • Petrescu AD, Vespa A, Huang H et al (2009) Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells. Biochim Biophys Acta Biomembr 1788:425–441

    Google Scholar 

  • Pettibone JM, Gigault J, Hackley VA (2013) Discriminating the states of matter in metallic nanoparticle transformations: what are we missing? ACS Nano 7:2491–2499

    Article  CAS  PubMed  Google Scholar 

  • Pitt JJ (2009) Principles and applications of liquid chromatography mass spectrometry in clinical biochemistry. Clin Biochem Rev 30:19–34

    PubMed  PubMed Central  Google Scholar 

  • Qhattal HSS, Liu X (2011) Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharmaceutics 8:1233–1246

    Article  CAS  Google Scholar 

  • Qhobosheane M, Santra S, Zhang P et al (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine challenge and perspectives. Angew Chem Int Ed 48:872–897

    Article  CAS  Google Scholar 

  • Ritz S, Schottler S, Kotman N, Baier G et al (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: Surface induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  PubMed  Google Scholar 

  • Röcker C, Pötzl M, Zhang F et al (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ruan G, Agrawal A, Marcus AI et al (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759–14766

    Article  CAS  PubMed  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotech 8:137–143

    Article  CAS  Google Scholar 

  • Sandhu KK, McIntosh CM, Simard JM et al (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem 13:3–6

    Article  CAS  Google Scholar 

  • Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42:439–462

    Article  CAS  PubMed  Google Scholar 

  • Seehof K, Kresse M, Mader K et al (2000) Interactions of nanoparticles with body proteins-improvement of 2D-PAGE-analysis by internal standard. Int J Pharm 196:231–234

    Article  CAS  PubMed  Google Scholar 

  • Simberg D, Park JH, Karmali PP et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Kim GJ, Nie S et al (2006) Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Strickland J, Dreher K, Kligerman AD et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Chance RR, Graessley WW et al (2004) A study of the separation principle in size exclusion chromatography. Macromolecules 37:4304–4312

    Article  CAS  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  CAS  PubMed  Google Scholar 

  • Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  PubMed  Google Scholar 

  • Thorley AJ, Ruenraroengsak P, Potter TE et al (2014) Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 8:11778–11789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toti US, Guru BR, Grill AE et al (2010) Interfacial activity assisted surface functionalization: a novel approach to incorporate maleimide functional groups and cRGD peptide on polymeric nanoparticles for targeted drug delivery. Mol Pharm 7:1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treuel L, Brandholt S, Maffre P et al (2014) Impact of protein modification on the protein corona on nanoparticles and nanoparticles cell interactions. ACS Nano 8:503–513

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan N, Yoshimitsu J, Ito Y et al (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26:7154–7163

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP et al (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  PubMed  Google Scholar 

  • Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  PubMed  Google Scholar 

  • Walsh M, Tangney M, O’Neill MJ et al (2006) Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm 3:644–653

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Xu R, Wu X et al (2009) Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharm 6:738–746

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Bai J, Jiang X et al (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Watson P, Jones AT, Stephens DJ (2005) Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 57:43–61

    Article  CAS  PubMed  Google Scholar 

  • Winzen S, Schoettler S, Baier G et al (2015) Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7:2992–3001

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008a) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008b) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Huang J, Li X et al (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Gullotti E, Tong L et al (2009) Intracellular drug delivery by poly (lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 6:190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Yang Y, Wei X et al (2014) Tumor-penetrating peptide mediation: An effective strategy for improving the transport of liposomes in tumor tissue. Mol Pharm 11:218–225

    Article  CAS  PubMed  Google Scholar 

  • Yue ZG, Wei W, Lv PP et al (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, So MK, Rao J (2006) Protease-modulated cellular uptake of quantum dots. Nanolett 6:1988–1992

    Article  CAS  Google Scholar 

  • Zhang Y, Bai Y, Jia J et al (2014) Perturbation of physiological systems by nanoparticles. Chem Soc Rev 43:3762–3809

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wu Y, Gallego-Perez D et al (2015) Effect of nonendocytic uptake of nanoparticles on human bronchial epithelial cells. Anal Chem 87:3208–3215

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhou H, Xiong B et al (2012) Pericellular matrix enhances retention and cellular uptake of nanoparticles. J Am Chem Soc 134:13404–13409

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Nie G, Meng H et al (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Director, IHBT for critical and valuable suggestions. Financial assistance from Council of Scientific and Industrial Research, Government of India is genuinely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitabha Acharya or Sudesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kumari, A., Singla, R., Guliani, A., Acharya, A., Yadav, S.K. (2016). Cellular Response of Therapeutic Nanoparticles. In: Yadav, S. (eds) Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-10-0818-4_7

Download citation

Publish with us

Policies and ethics