Skip to main content

Interconnect Modeling, CNT and GNR Structures, Properties, and Characteristics

  • Chapter
  • First Online:
  • 643 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter reviews the Cu-based on-chip interconnect modeling. The unique atomic structure and properties of carbon nanotube (CNT) and graphene nanoribbon (GNR) are discussed. The characteristics and semiconducting/metallic properties of graphene-based on-chip interconnects are presented. Depending on the physical configuration, equivalent electrical models of MWCNT and MLGNR interconnect lines are also introduced. An extensive review on performance analysis of on-chip interconnects is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Livshits P, Sofer S (2012) Aggravated electromigration of copper interconnection lines in ULSI devices due to crosstalk noise. IEEE Trans Device Mater Reliab 12(2):341–346

    Article  Google Scholar 

  2. Moll F, Roca M, Rubio A (1998) Inductance in VLSI interconnection modeling. IEEE Proc Circuits Devices Syst 145(3):175–179

    Article  Google Scholar 

  3. Sakurai T, Newton R (1990) Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J Solid-State Circuits 25(2):584–594

    Article  Google Scholar 

  4. Bowman KA, Austin BL, Eble JC, Xingha T, Meindl JD (1999) A physical alpha-power law MOSFET model. IEEE J Solid State Circuits 34(10):1410–1414

    Article  Google Scholar 

  5. Dutta S, Shetti SSM, Lusky SL (1995) A comprehensive delay model for CMOS inverters. IEEE J Solid-State Circuits 30(8):864–871

    Article  Google Scholar 

  6. Bisdounis L, Nikolaidis S, Koufopavlou O (1998) Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices. IEEE J Solid-State Circuits 33(2):302–306

    Article  Google Scholar 

  7. Qian J, Pullela S, Pillage L (1994) Modeling the effective capacitance for the RC interconnect of CMOS gates. IEEE Trans Comput Aided Des 13(12):1526–1535

    Article  Google Scholar 

  8. Hafed M, Oulmane M, Rumin NC (2001) Delay and current estimation in a CMOS inverter with an RC load. IEEE Trans Comput Aided Des 20(1):80–89

    Article  Google Scholar 

  9. Chatzigeorgiou A, Nikolaidis S, Tsoukalas I (2001) Modeling CMOS gates driving RC interconnect loads. IEEE Trans Circuits Syst II Analog Digital Signal Process 48(4):413–418

    Article  Google Scholar 

  10. Adler V, Friedman EG (1998) Repeater design to reduce delay and power in resistive interconnect. IEEE Tran Circuits Syst II Analog Digital Signal Process 45(5):607–616

    Article  Google Scholar 

  11. Bakoglu HB, Meindl JD (1985) Optimal interconnection circuits for VLSI. IEEE Trans Electron Devices 32(5):903–909

    Article  Google Scholar 

  12. Rubinstein J, Penfield P, Horowitz MA (1983) Signal delay in RC tree networks. IEEE Trans Comput Aided Des 2(3):202–211

    Article  Google Scholar 

  13. Kahng A, Muddu S (1997) An analytical delay model for RLC interconnects. IEEE Trans Comput Aided Des 16(2):1507–1514

    Article  MathSciNet  Google Scholar 

  14. Ismail YI, Friedman EG, Neves JL (2000) Equivalent elmore delay for RLC trees. IEEE Trans Comput Aided Des 19(1):83–97

    Article  Google Scholar 

  15. Bai X, Chandra R, Dey S, Srinivas PV (2004) Interconnect couplingaware driver modeling in static noise analysis for nanometer circuits. IEEE Trans Comput Aided Des 23(8):1256–1263

    Article  Google Scholar 

  16. Davis JA, Meindl JD (2000) Compact distributed RLC models, part I: single line transient, time delay, and overshoot expressions. IEEE Trans Electron Devices 47(11):2068–2077

    Article  Google Scholar 

  17. Davis JA, Meindl JD (2000) Compact distributed RLC models, part II: coupled line transient expressions and peak crosstalk in multilevel networks. IEEE Trans Electron Devices 47(11):2078–2087

    Article  Google Scholar 

  18. Agarwal K, Sylvester D, Blaauw D (2006) Modeling and analysis of crosstalk noise in coupled RLC interconnects. IEEE Trans Comput Aided Des Integr Circuits Syst 25(5):892–901

    Article  Google Scholar 

  19. Liu T, Kuo J, Zhang S (2012) A closed-form analytical transient response model for on-chip distortion less interconnect. IEEE Trans Electron Devices 59(12):3186–3192

    Article  Google Scholar 

  20. Kaushik BK, Sarkar S (2008) Crosstalk analysis for a CMOS gate driven inductively and capacitively coupled interconnects. Microelectron J 39(12):1834–1842

    Article  Google Scholar 

  21. Kaushik BK, Sarkar S, Agarwal RP, Joshi RC (2010) An analytical approach to dynamic crosstalk in coupled interconnects. Microelectron J 41(2):85–92

    Article  Google Scholar 

  22. Li XC, Ma JF, Swaminathan M (2011) Transient analysis of CMOS gate driven RLGC interconnects based on FDTD. IEEE Trans Comput Aided Des Integr Circuits Syst 30(4):574–583

    Article  Google Scholar 

  23. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  24. Scarselli M, Castrucci P, Crescenzi M (2012) Electronic and optoelectronic nano-devices based on carbon nanotubes. J Phys Condens Matter 24(31):313202-1–313202-36

    Google Scholar 

  25. Xu T, Wang Z, Miao J, Chen X, Tan CM (2007) Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Letts 91(4):042108-1–042108-3

    Google Scholar 

  26. Monthioux M, Serp P, Flahaut E (2010) Introduction to carbon nanotubes. In: Bhushan B (ed) Handbook of nano-technology. Springer, New York

    Google Scholar 

  27. Wang N, Tang ZK, Li GD, Chen JS (2000) Single-walled 4 Å carbon nanotube arrays. Nature 408:50–51

    Article  Google Scholar 

  28. Javey A, Kong J (2009) Carbon nanotube electronics. Springer

    Google Scholar 

  29. Hamada N, Sawada SI, Oshiyama A (1992) New one-dimensional conductors, graphite microtubules. Phys Rev Lett 68:1579–1581

    Article  Google Scholar 

  30. Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):86601

    Article  Google Scholar 

  31. Nihei M, Kondo D, Kawabata A (2005) Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. In: Proceedings of the IEEE international interconnect technology conference, pp 234–36

    Google Scholar 

  32. Forró L, Schönenberger C (2000) Physical properties of multi-wall nanotubes in topics in applied physics, carbon nanotubes: synthesis, structure, properties and applications. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Springer-Verlag, Berlin, Germany

    Google Scholar 

  33. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172–1174

    Article  Google Scholar 

  34. Close GF, Wong HSP (2008) Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans Nanotechnol 7(5):596–600

    Article  Google Scholar 

  35. Shah TK, Pietras BW, Adcock DJ, Malecki HC, Alberding MR (2013) Composites comprising carbon nanotubes on fiber. US Patent, US8585934 B2

    Google Scholar 

  36. Dresselhaus M, Dresselhaus G, Avouris Ph (2001) Carbon nanotubes: synthesis, structure, properties and applications. Top Appl Res 80

    Google Scholar 

  37. Hsieh JYL, Huang JM, Hwang CC (2006) Theoretical variations in the young’s modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study. Nanotechnology 17:3920–3924

    Article  Google Scholar 

  38. Forro L, Salvetat JP, Bonard J (2002) Electronic and mechanical properties of carbon nanotubes. In: Tománek D, Enbody RJ (eds) Science and application of nanotubes. Plenum Publishers, New York, pp 297–320

    Chapter  Google Scholar 

  39. Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2(6):647–650

    Article  Google Scholar 

  40. Wang Z, Zhao GL (2013) Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz. Open J Compos Mater 3(2):17–23

    Article  Google Scholar 

  41. Ifeanyi HN, John IE, Zhou W, Diola B, Guang-Lin Z (2015) Microwave absorption properties of multi-walled carbon nanotube (outer diameter 20–30 nm)–epoxy composites from 1 to 26.5 GHz. Diam Relat Mater 52:66–71

    Article  Google Scholar 

  42. Srivastava A, Xu Y, Sharma AK (2010) Carbon nanotubes for next generation very large scale integration interconnects. J Nanophotonics 4(1):1–26

    Article  Google Scholar 

  43. Li H, Yin WY, Banerjee K, Mao JF (2008) Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans Electron Devices 55(6):1328–1337

    Article  Google Scholar 

  44. Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27(5):338–340

    Article  Google Scholar 

  45. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett 26(2):84–86

    Article  Google Scholar 

  46. Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144

    Article  Google Scholar 

  47. Avouris P, Appenzeller J, Martel R, Wind SJ (2003) Carbon nanotube electronics. Proc IEEE 91(11):1772–1784

    Article  Google Scholar 

  48. Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82(15):2491–2493

    Article  Google Scholar 

  49. Ngo Q, Petranovic D, Krishnan S, Cassell AM, Ye Q, Li J, Meyyappan M, Yang CY (2004) Electron transport through metal–multiwall carbon nanotube interfaces. IEEE Trans Nanotechnol 3(2):311–317

    Article  Google Scholar 

  50. Miano G, Villone F (2005) An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model. IEEE Trans Antennas Propag 54(10):2713–2724

    Article  MathSciNet  Google Scholar 

  51. Xu Y, Srivastava A (2009) A model for carbon nanotube interconnects. Int J Circuit Theory Appl 38(6):559–575

    MATH  Google Scholar 

  52. Sarto MS, Tamburrano A (2010) Single conductor transmission-line model of multiwall carbon nanotubes. IEEE Trans Nanotechnol 9(1):82–92

    Article  Google Scholar 

  53. Tang M, Lu J, Mao J (2012) Study on equivalent single conductor model of multi-walled carbon nanotube interconnects. In: Proceedings of the IEEE Asia Pacific microwave conference, Taiwan, pp 1247–1249

    Google Scholar 

  54. D’Amore M, Sarto MS, Tamburrano A (2010) Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans Electromagn Compat 52(2):496–503

    Article  Google Scholar 

  55. Lamberti P, Tucci V (2012) Impact of variability of the process parameters on CNT-based nanointerconnects performances: a comparison between SWCNTs bundles and MWCNT. IEEE Trans Nanotechnol 11(5):924–933

    Article  Google Scholar 

  56. Liang F, Lin H, Wang G (2010) Prediction of crosstalk effects in future multiwall carbon nanotube (MWCNT) interconnects. In: Proceedings of the IEEE symposium on antennas propagation and EM theory (ISAPE), Guangzhou, pp 1031–1034

    Google Scholar 

  57. Das D, Rahaman H (2011) Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans Nanotechnol 10(6):1362–1370

    Article  Google Scholar 

  58. Das D, Rahaman H (2011) IR drop analysis in single- and multi-wall carbon nanotube power interconnects in sub-nanometer designs. In: Proceedings of the IEEE Asia symposium on quality electronic design (ASQED), pp 174–183

    Google Scholar 

  59. Liang F, Wang G, Lin H (2012) Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans Electromagn Compat 54(1):133–139

    Article  Google Scholar 

  60. Sahoo M, Rahaman H (2013) Performance analysis of multiwalled carbon nanotube bundles. In: Electronics and Nanotechnology (ELNANO), IEEE XXXIII international scientific conference, pp 200–204

    Google Scholar 

  61. Tang M, Mao J (2015) Modeling and fast simulation of multiwalled carbon nanotube interconnects. IEEE Trans Electromagn Compat 57(2):232–240

    Article  Google Scholar 

  62. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920–1923

    Article  Google Scholar 

  63. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev 54(24):17954–17961

    Article  Google Scholar 

  64. Echtermeyer TJ, Lemme MC, Baus M, Szafranek BN, Geim AK, Kurz H (2008) Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett 29(8):952–954

    Article  Google Scholar 

  65. Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A graphene field-effect device. IEEE Electron Device Lett 28(4):282–284

    Article  Google Scholar 

  66. Rawat B, Paily R (2015) Analysis of graphene tunnel field-effect transistors for analog/RF applications. IEEE Trans Electron Devices 62(8):2663–2669

    Article  Google Scholar 

  67. Naeemi A, Meindl JD (2007) Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett 28(5):428–431

    Article  Google Scholar 

  68. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  Google Scholar 

  69. Kan, E.; Li, Z.; Yang. J. “Graphene nanoribbons: geometric electronic and magnetic properties,” In Physics and Applications of Graphene—Theory, INTECH, ed. S. Mikhailov, Chapter 16, 2011.

    Google Scholar 

  70. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294

    Article  Google Scholar 

  71. Murali KH, Brenner K, Yang Y, Beck T, Meindl JD (2009) Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett 30(6):611–613

    Article  Google Scholar 

  72. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  Google Scholar 

  73. Naeemi A, Meindl JD (2009) Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans Electron Devices 56(9):1822–1833

    Article  Google Scholar 

  74. Stan MR, Unluer D, Ghosh A, Tseng F (2009) Graphene devices, interconnect and circuits—challenges and opportunities. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), Taipei, pp 69–72

    Google Scholar 

  75. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  Google Scholar 

  76. Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes—Relations between tubes and sheets. Phys Rev B Condens Matter 52(20):14935–14940

    Article  Google Scholar 

  77. Xu C, Li H, Banerjee K (2009) Modeling, analysis, and design of graphene nanoribbon interconnects. IEEE Trans Electron Devices 56(8):1567–1578

    Article  Google Scholar 

  78. Hanlon LR, Falardeau ER, Fischer JE (1977) Metallic reflectance of AsF5-graphite intercalation compounds. Solid State Commun 24(5):377–381

    Article  Google Scholar 

  79. Wen-Sheng Zhao; Wen-Yan Yin (2014) Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 56(3):638–645

    Article  Google Scholar 

  80. Nasiri SH, Faez R, Moravvej-Farshi MK (2012) Compact formulae for number of conduction channels in various types of grapheme nanoribbons at various temperatures. Mod Phys Lett B 26(1):1150004-1–115004-5

    Google Scholar 

  81. Cui J, Zhao W, Yin W, Hu J (2012) Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 54(1):126–132

    Article  Google Scholar 

  82. Areshkin DA, Gunlycke D, White CT (2007) Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett 7(1):204–210

    Article  Google Scholar 

  83. Hwang EH, Adam S, Sarma SD (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):186806-1–186806-4

    Google Scholar 

  84. Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 98(16):166802-1–166802-4

    Google Scholar 

  85. Plombon JJ (2007) High-frequency electrical properties of individual and bundled carbon nanotubes. Appl Phys Lett 90(6):063106-1–063106-3

    Google Scholar 

  86. Sarto MS, Tamburrano A (2010) Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects. In: Proceedings of the IEEE international symposium on electromagnetic compatibility, Fort Lauderdale, FL, USA, pp 212–217

    Google Scholar 

  87. Nishad AK, Sharma R (2014) Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J Sel Top Quantum Electron 20(1):3700108-1–3700108-8

    Google Scholar 

  88. Sahoo M, Rahaman H (2014) Impact of line resistance variations on crosstalk delay and noise in multilayer graphene nano ribbon interconnects. In: Proceedings of the international symposium on electronic system Design (ISED), pp 94–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Kaushik .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Kaushik, B.K., Kumar, V.R., Patnaik, A. (2016). Interconnect Modeling, CNT and GNR Structures, Properties, and Characteristics. In: Crosstalk in Modern On-Chip Interconnects. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0800-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0800-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0799-6

  • Online ISBN: 978-981-10-0800-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics