Skip to main content

Kalman Fusion Estimation for WSNs with Nonuniform Estimation Rates

  • Chapter
  • First Online:
Distributed Fusion Estimation for Sensor Networks with Communication Constraints
  • 677 Accesses

Abstract

As mentioned in Chap. 2, developing energy-efficient algorithms for WSN-based estimation is of great practical significance since the sensor nodes are usually constrained in energy. As usually did in WSNs, one may purposively close the sensor nodes to save power during certain time interval and wake them up when necessary. That is to say, in many situations, it is not necessary for sensors to transmit measurements and generate estimates at every sampling instant from the energy-efficiency perspective, and the sensors may work and generate estimates with two rates, namely, a fast rate and a slow rate according to their power situations. Therefore, adopting a nonuniform estimation rate is a more preferable strategy for sensor network-based estimation system with energy constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan MI, Sastry SS (2001) Kalman filtering with intermittent observations. IEEE Trans Autom Control 49(9):1453–1464

    Article  MathSciNet  Google Scholar 

  2. Huang M, Dey S (2007) Stability of Kalman filtering with Markovian packet losses. Automatica 43(4):598–607

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang WA, Feng G, Yu L (2011) Optimal linear estimation for networked systems with communication constraints. Automatica 47(9):1992–2000

    Article  MathSciNet  MATH  Google Scholar 

  4. Dong H, Wang Z, Gao H (2012) Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans Signal Process 60(6):3164–3173

    Article  MathSciNet  Google Scholar 

  5. Hounkpevi FO, Yaz EE (2007) Robust minimum variance linear state estimators for multiple sensors with different failure rates. Automatica 43(7):1274–1280

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen B, Wang ZD, Liu XH (2011) A stochastic sampled-data approach to distributed \(H_{\infty }\) filtering in sensor networks. IEEE Trans Circuit Syst-I Regul Pap 58(9):2237–2246

    Article  MathSciNet  Google Scholar 

  7. Carlson NA (1990) Federated square root filter for decentralized parallel processes. IEEE Trans Aerosp Electron Syst 26(3):517–529

    Article  Google Scholar 

  8. Kim KH (1994) Development of track to track fusion algorithm. In: Proceedings of the American control conference, Baltimore, pp 1037–1041

    Google Scholar 

  9. Sun SL, Deng ZL (2004) Multi-sensor optimal information fusion Kalman filter. Automatica 40(6):1017–1023

    Article  MathSciNet  MATH  Google Scholar 

  10. Bar-Shalom Y, Li XR (1990) Multitarget-multisensor tracking: advanced applications, vol 1. Artech House, Norwood

    Google Scholar 

  11. Chong CY, Chang KC, Mori S (1986) Distributed tracking in distributed sensor networks. In: Proceedings of the 1986 American control conference, Seattle, pp 1863–1868

    Google Scholar 

  12. Chong CY, Mori S, Chang KC (1990) Distributed multitarget multisensor tracking. In: Bar-Shalom Y (ed) Multitarget-multisensor tracking: advanced applications, vol 1. Artech House, Norwood

    Google Scholar 

  13. Cristi R, Tummala M (2000) Multirate, multiresolution, recursive Kalman filter. Signal Process 80(9):1945–1958

    Article  MATH  Google Scholar 

  14. Fabrizio A, Luciano A (2000) Filterbanks design for multisensor data fusion. IEEE Signal Process Lett 7(5):100–103

    Article  Google Scholar 

  15. Hong L (1992) Distributed filtering using set models. IEEE Trans Aerosp Electron Syst 27(4):715–724

    Article  Google Scholar 

  16. Yan LP, Liu BS, Zhou DH (2007) Asynchronous multirate multisensor information fusion algorithm. IEEE Trans Aerosp Electron Syst 43(3):1135–1146

    Article  MathSciNet  Google Scholar 

  17. Alouani AT, Gray JE, McCabe DH (2005) Theory of distributed estimation using multiple asynchroous sensors. IEEE Trans Aerosp Electron Syst 41(2):717–722

    Article  Google Scholar 

  18. Hu YY, Duan ZS, Zhou DH (2010) Estimation fusion with general asynchronous multi-rate sensors. IEEE Trans Aerosp Electron Syst 46(4):2090–2102

    Article  Google Scholar 

  19. Wang F, Balakrishnan V (2002) Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties. IEEE Trans Signal Process 50(4):803–813

    Article  MathSciNet  Google Scholar 

  20. Anderson BDO, Moore JB (1979) Optimal filtering. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  21. Liang Y, Chen TW, Pan Q (2009) Multi-rate optimal state estimation. Int J Control 82(11):2059–2076

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press, Beijing and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhang, WA., Chen, B., Song, H., Yu, L. (2016). Kalman Fusion Estimation for WSNs with Nonuniform Estimation Rates. In: Distributed Fusion Estimation for Sensor Networks with Communication Constraints. Springer, Singapore. https://doi.org/10.1007/978-981-10-0795-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0795-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0793-4

  • Online ISBN: 978-981-10-0795-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics