Skip to main content

Introduction

  • Chapter
  • First Online:
  • 677 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The selective hydrogenation of alkynes and dienes is an important reaction in chemical industry. They are widely applied in the purification of olefin streams to remove alkynes/dienes, the gasoline refinery process, and some of the fine chemical processes. The selective hydrogenation of acetylene also provides a new route for the production of ethylene from natural gas or coal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yan K (1999) Progress in catalyst development for the selective hydrogenation of C2–C4. Mod Chem Ind 03:13–15

    Google Scholar 

  2. Gao H (1990) Removal of alkynes and dienes from 1-butene stream by selective hydrogenation. Qilu Petrochem Tech 02:40–45

    Google Scholar 

  3. Gao H, Gao B, Zhang J et al (1999) Selective hydrogenation of C3 cracking stream by catalytic distillation. Qilu Petrochem Tech 04:241–244

    Google Scholar 

  4. Liao L, Cheng J, Wang Z et al (2003) Catalytic distillation application in the selective hydrogenation of C3 stream. Chem Ind Eng 02:18–20

    Google Scholar 

  5. Dai W, Zhu J, Wan W (2000) Progress in the selective hydrogenation of C2 stream. Petrochem Tech 07:535–540

    Google Scholar 

  6. Gao B, Zhang J, Wang Y et al (2001) Application and development of selective hydrogenation. Qilu Petrochem Tech 04:269–272

    Google Scholar 

  7. Wang J, Liu Z, Zhao D (2008) Progress in hysomer technology for the utilization of C4 species. Petrochem Tech 01:100–105

    Google Scholar 

  8. Li Y, Fan Y (2003) Study on the selective hydrogenation of dienes and alkynes. J Sanxia Univ (Nat Sci) 04:381–384

    Google Scholar 

  9. Mao X, Zou X (1986) The formation of copper acetylide and its explosive properties. Fire Sci Tech 04:21–23

    Google Scholar 

  10. Zhang Q, Liu X, Zhu Q (1998) Current development in the selective hydrogenation of alkynes and dienes. Petrochem Tech 01:55–60

    Google Scholar 

  11. Hong D (2014) Review and outlook in petrochemical industry (China 2013). Chem Ind Eng Prog 07:1633–1658

    Google Scholar 

  12. Yang C (2013) The development of coal chemical industry is beneficial to reduce the external dependence of oil in China. Sino-Glob Energ 11:1–6

    CAS  Google Scholar 

  13. Li J, Zheng M, Zhang G et al (2012) Outlook on conventional and unconventional natural gas resources in China. Acta Petrol Sin S1:89–98

    Google Scholar 

  14. Chen J, Cheng Y, Xiong X et al (2009) Progress in thermal plasma pyrolysis of coal to acetylene. Chem Ind Eng Prog 03:361–367

    Google Scholar 

  15. Zhu X (2010) Imbalance in the PVC supply and demand. China Petro Chem Ind 02:26

    Google Scholar 

  16. Liu Z (2008) Challenges and development of PVC in China. China Chlor-Alkali 03:1–6

    CAS  Google Scholar 

  17. Jiao Y (2013) Analysis and forecast of PE market. Guangzhou Chem Eng 10:58–59

    Google Scholar 

  18. Dong X (2014) Analysis of factors on the operation of C2 hydrogenation reactors in PetroChina Daqing. Jiangxi Petrochem Ind 02:85–88

    Google Scholar 

  19. Yang F, Zhang L, Xie C (2011) Optimization of C2 hydrogenation reactor. Contem Chem Ind 10:1007–1012

    Google Scholar 

  20. Ren Z, Yang Z, Zhang Q (2009) Progress in the Ni catalyst for the selective hydrogenation of gasoline. Petrchem Tech 01:98–102

    Google Scholar 

  21. Huang Y, Liu H (2008) Process study in the selective hydrogenation of 1-methyldicyclopentadiene. Tech Econ Petrochem 05:36–40

    Google Scholar 

  22. Wei H, Huang X, Lv H et al (2010) Operation parameters’ effect on the selective hydrogenation of isoprene in trickle bed reactor. Petrochem Tech 12:1349–1353

    Google Scholar 

  23. Tian B, Dai W, Yang Z et al (2009) Selective hydrogenation of C5 dienes. Chem Ind Eng Prog 11:1932–1935

    Google Scholar 

  24. Zhang G (2006) Selective hydrogenation of OCT-M gasoline: process application. Petrochem Ind Tech 02:17–20

    CAS  Google Scholar 

  25. Li Z (2001) Design of tricle bed reactor for the liquid phase hydrogenation of hydrocarbons. Chem Eng (China) (03):33–36+33

    Google Scholar 

  26. Zhao B, Liu X, Li H (1991) Catalyst and process for the liquid phase hydrogenation of C3 stream. Petrochem Tech 04:255–261

    Google Scholar 

  27. Zhang S, Dai W, Qi D et al (2008) Application of novel catalyst in the selective hydrogenation of C3 stream. Chem Ind Eng Prog 03:464–467

    Google Scholar 

  28. Zhao B, Liu X (1987) Catalyst study in the liquid phase hydrogenation of propyne and propadiene. Petrochem Tech 12:821–827

    Google Scholar 

  29. Borodzinski A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 48(02):91–144

    Google Scholar 

  30. Huang L, Dai W, Tian B et al (2011) Progress in the selective hydrogenation of cracking stream. Petrochem Tech 04:450–456

    Google Scholar 

  31. Dai W, Zhu J, Wan W (2000) Process and catalyst progress in the selective hydrogenation of C2 stream. Petrochem Tech 07:535–540

    Google Scholar 

  32. Duca D, Frusteri F, Parmaliana A et al (1996) Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts. Appl Catal A-Gen 146(2):269–284

    Article  CAS  Google Scholar 

  33. Shell Int Res MIJ NV (1974) NL Patent 142934-B

    Google Scholar 

  34. Chemetron Corp. (1962) NL Patent 132820-B

    Google Scholar 

  35. Ventron Corp. (1976) CA Patent 1000306-A

    Google Scholar 

  36. Ventron Corp. (1974). US Patent 3804916-A

    Google Scholar 

  37. Frevel LK, Kressley LJ (1978) US Patent 4101451-A

    Google Scholar 

  38. Vadekar M, Robson H E (1983) US Patent 4387258-A

    Google Scholar 

  39. Molnar A, Sarkany A, Varga M (2001) Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity. J Mol Catal A-Chem 173(1–2):185–221

    Article  CAS  Google Scholar 

  40. Molero H, Bartlett BF, Tysoe WT (1999) The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence. J Catal 181(1):49–56

    Article  CAS  Google Scholar 

  41. Borodzinski A (1999) Hydrogenation of acetylene-ethylene mixtures on a commercial palladium catalyst. Catal Lett 63(1–2):35–42

    Article  CAS  Google Scholar 

  42. Borodzinski A, Golebiowski A (1997) Surface heterogeneity of supported palladium catalyst for the hydrogenation of acetylene-ethylene mixtures. Langmuir 13(5):883–887

    Article  CAS  Google Scholar 

  43. Vincent MJ, Gonzalez RD (2001) A Langmuir-Hinshelwood model for a hydrogen transfer mechanism in the selective hydrogenation of acetylene over a Pd/γ-Al2O3 catalyst prepared by the sol-gel method. Appl Catal A-Gen 217(1–2):143–156

    Article  CAS  Google Scholar 

  44. Mei D, Sheth PA, Neurock M et al (2006) First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111). J Catal 242(1):1–15

    Article  CAS  Google Scholar 

  45. Hevia MAG, Bridier B, Perez-Ramirez J (2012) Mechanistic study of the palladium-catalyzed ethyne hydrogenation by the temporal analysis of products technique. App Catal A-Gen 439:163–170

    Article  CAS  Google Scholar 

  46. Sheth PA, Neurock M, Smith CM (2003) A first-principles analysis of acetylene hydrogenation over Pd(111). J Phys Chem B 107(9):2009–2017

    Article  CAS  Google Scholar 

  47. Xie X, Song X, Dong W et al (2014) Adsorption mechanism of acetylene hydrogenation on the Pd (111) surface. Chin J Chem 32(7):631–636

    Article  CAS  Google Scholar 

  48. Duca D, Barone G, Varga Z (2001) Hydrogenation of acetylene-ethylene mixtures on Pd catalysts: computational study on the surface mechanism and on the influence of the carbonaceous deposits. Catal Lett 72(1–2):17–23

    Article  CAS  Google Scholar 

  49. Duca D, Varga Z, La Manna G et al (2000) Hydrogenation of acetylene-ethylene mixtures on Pd catalysts: study of the surface mechanism by computational approaches: metal dispersion and catalytic activity. Theor Chem Acc 104(3–4):302–311

    Article  CAS  Google Scholar 

  50. Li JN, Pu M, He SH et al (2011) Reaction mechanism of acetylene hydrogenation catalyzed by Pd-8 cluster. Acta Phys Chim Sin 27(4):793–800

    CAS  Google Scholar 

  51. Li JN, Pu M, Ma CC et al (2012) The effect of palladium clusters (Pd-n, n = 2–8) on mechanisms of acetylene hydrogenation: a DFT study. J Mol Catal A-Chem 359:14–20

    Article  CAS  Google Scholar 

  52. Scholten JJF, Konvalinka JA (1966) Hydrogen-deuterium equilibration and parahydrogen and orthodeuterium conversion over palladium: kinetics and mechanism. J Catal 5(1):1–17

    Article  CAS  Google Scholar 

  53. Larsson M, Jansson J, Asplund S (1998) The role of coke in acetylene hydrogenation on Pd/α-Al2O3. J Catal 178(1):49–57

    Article  CAS  Google Scholar 

  54. Ahn IY, Lee JH, Kum SS et al (2007) Formation of C4 species in the deactivation of a Pd/SiO2 catalyst during the selective hydrogenation of acetylene. Catal Today 123(1–4):151–157

    Google Scholar 

  55. Xu Q, Smith CM, Blackson J et al (2005) TEM study on catalyst deactivation during selective acetylene hydrogenation. Microsc Microanal 11(S02):1576–1577

    Article  Google Scholar 

  56. Liu RJ, Crozier PA, Smith CM et al (2005) Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. App Catal A-Gen 282(1–2):111–121

    Article  CAS  Google Scholar 

  57. Ahn IY, Lee JH, Kim SK et al (2009) Three-stage deactivation of Pd/SiO2 and Pd-Ag/SiO2 catalysts during the selective hydrogenation of acetylene. App Catal A-Gen 360(1):38–42

    Article  CAS  Google Scholar 

  58. Sarkany A (2001) Formation of C4 oligomers in hydrogenation of acetylene over Pd/Al2O3 and Pd/TiO2 catalysts. React Kinet Catal Lett 74(2):299–307

    Google Scholar 

  59. Esmaeili E, Rashidi AM, Mortazavi Y et al (2013) SMFs-supported Pd nanocatalysts in selective acetylene hydrogenation: pore structure-dependent deactivation mechanism. J Energ Chem 22(5):717–725

    Article  CAS  Google Scholar 

  60. Almanza LO, Martinez OI (2001) Regeneration of supported palladium catalyst for selective hydrogenation of acetylene. In: Studies in surface science and catalysis, vol 139. Elsevier, pp 311–318

    Google Scholar 

  61. Liu JY, Lu HM, Ling ZG et al (2008) Catalytic properties of supported Pd/SBA-15 catalyst for selective hydrogenation of alkadienes. Chin J Catal 29(3):206–208

    Google Scholar 

  62. Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O et al (2014) Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. J Mol Catal A-Chem 383:182–187

    Article  CAS  Google Scholar 

  63. Leon MA, Nijhuis TA, van der Schaaf J et al (2012) Mass transfer modeling of a consecutive reaction in rotating foam stirrer reactors: selective hydrogenation of a functionalized alkyne. Chem Eng Sci 73:412–420

    Article  CAS  Google Scholar 

  64. Panpranot J, Kontapakdee K, Praserthdam P (2006) Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. J Phys Chem B 110(15):8019–8024

    Article  CAS  Google Scholar 

  65. Borodzinski A (2001) The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catal Lett 71(3–4):169–175

    Article  CAS  Google Scholar 

  66. Tessier D, Rakai A, BozonVerduraz F (1996) Palladium-alumina catalysts: precursor, support and dispersion effects in selective hydrogenation. Bull Soc Chim Fr 133(6):637–642

    CAS  Google Scholar 

  67. Komhom S, Mekasuwandumrong O, Panpranot J et al (2009) Influence of preparation method on the nanocrystalline porosity of α-Al2O3 and the catalytic properties of Pd/α-Al2O3 in selective acetylene hydrogenation. Ind Eng Chem Res 48(13):6273–6279

    Article  CAS  Google Scholar 

  68. Zakumbayeva GD, Toktabayeva NF, Kubasheva AZ et al (1994) Influence of the degree of dispersion of palladium on the selective hydrogenation of acetylene in an ethane-ethylene fraction. Petro Chem 34(3):249–258

    Google Scholar 

  69. Duca D, Liotta LF, Deganello G (1995) Selective hydrogenation of phenylacetylene on pumice-supported palladium catalysts. J Catal 154(1):69–79

    Article  CAS  Google Scholar 

  70. Feng JT, Ma XY, Evans DG et al (2011) Enhancement of metal dispersion and selective acetylene hydrogenation catalytic properties of a supported pd catalyst. Ind Eng Chem Res 50(4):1947–1954

    Article  CAS  Google Scholar 

  71. Komhom S, Mekasuwandumrong O, Praserthdam P et al (2008) Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal Comm 10(1):86–91

    Article  CAS  Google Scholar 

  72. McKenna FM, Mantarosie L, Wells RPK et al (2012) Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catal Sci Tech 2(3):632–638

    Article  CAS  Google Scholar 

  73. Pattamakomsan K, Aires FJCS, Suriye K et al (2011) Effects of impregnation solvent and reduction temperature on the catalytic performance of Pd/Al2O3 in the selective hydrogenation of 1,3-butadiene. React Kinet Mech Catal 103(2):405–417

    Article  CAS  Google Scholar 

  74. Goetz J, Volpe MA, Touroude R (1996) Low-loaded Pd/α-Al2O3 catalysts: influence of metal particle morphology on hydrogenation of buta-1,3-diene and hydrogenation and isomerization of but-1-ene. J Catal 164(2):369–377

    Article  CAS  Google Scholar 

  75. Liotta LF, Venezia AM, Martorana A et al (1997) Model pumices supported metal catalysts. 2. Liquid phase selective hydrogenation of 1,3-cyclooctadiene. J Catal 171(1):177–183

    Google Scholar 

  76. Pattamakomsan K, Suriye K, Dokjampa S et al (2010) Effect of mixed Al2O3 structure between θ- and α-Al2O3 on the properties of Pd/Al2O3 in the selective hydrogenation of 1,3-butadiene. Catal Comm 11(5):311–316

    Article  CAS  Google Scholar 

  77. Boitiaux JP, Cosyns J, Vasudevan S (1983) Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst: part I: behaviour of small metal particles. Appl Catal 6(1):41–51

    Article  CAS  Google Scholar 

  78. Wehrli JT, Thomas DJ, Wainwright MS et al (1991) Selective hydrogenation of propyne over supported copper-catalysts: influence of support. Appl Catal 70(2):253–262

    Article  CAS  Google Scholar 

  79. Primet M, Elazhar M, Guenin M (1990) Influence of the support towards platinum catalyzed 1,3-butadiene hydrogenation. Appl Catal 58(2):241–253

    Article  CAS  Google Scholar 

  80. Zhu S, Hou R, Wang T (2012) Effects of supports and promoter ag on pd catalysts for selective hydrogenation of acetylene. Chin J Process Eng 12(3):489–496

    CAS  Google Scholar 

  81. Asplund S (1996) Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation. J Catal 158(1):267–278

    Article  CAS  Google Scholar 

  82. Chinayon S, Mekasuwandumrong O, Praserthdam P et al (2008) Selective hydrogenation of acetylene over Pd catalysts supported on nanocrystalline α-Al2O3 and Zn-modified α-Al2O3. Catal Comm 9(14):2297–2302

    Article  CAS  Google Scholar 

  83. Houzvicka J, Pestman R, Ponec V (1995) The role of carbonaceous deposits and support impurities in the selective hydrogenation of ethyne. Catal Lett 30(1–4):289–296

    Article  Google Scholar 

  84. Tauster S, Fung S, Garten R (1978) Strong metal-support interactions: group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100(1):170–175

    Article  CAS  Google Scholar 

  85. Kang JH, Shin EW, Kim WJ et al (2002) Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J Catal 208(2):310–320

    Article  CAS  Google Scholar 

  86. Lee DC, Kim JH, Kim WJ et al (2003) Selective hydrogenation of 1,3-butadiene on TiO2-modified Pd/SiO2 catalysts. App Catal A-Gen 244(1):83–91

    Article  CAS  Google Scholar 

  87. Weerachawanasak P, Praserthdam P, Arai M et al (2008) A comparative study of strong metal-support interaction and catalytic behavior of Pd catalysts supported on micron- and nano-sized TiO2 in liquid-phase selective hydrogenation of phenylacetylene. J Mol Catal A-Chem 279(1):133–139

    Article  CAS  Google Scholar 

  88. Monteiro RD, Noronha FB, Dieguez LC et al (1995) Characterization of Pd-CeO2 interaction on alumina support and hydrogenation of 1,3-butadiene. App Catal A-Gen 131(1):89–106

    Article  CAS  Google Scholar 

  89. Binet C, Jadi A, Lavalley JC et al (1992) Metal support interaction in Pd/CeO2 catalysts—Fourier-transform infrared studies of the effects of the reduction temperature and metal loading.1. Catalysts prepared by the microemulsion technique. J Chem Soc-Faraday Trans 88 (14):2079–2084

    Google Scholar 

  90. Kepinski L, Wolcyrz M (1997) Microstructure of Pd/CeO2 catalyst: effect of high temperature reduction in hydrogen. App Catal A-Gen 150(2):197–220

    Article  CAS  Google Scholar 

  91. Shao Y, Xu Z, Wan H et al (2010) Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts. J Hazard Mater 179(1–3):135–140

    Article  CAS  Google Scholar 

  92. Zhou J, Han Y, Wang W et al (2013) Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts. Appl Catal B-Environ 134:222–230

    Article  CAS  Google Scholar 

  93. Kim E, Shin EW, Bark CW et al (2014) Pd catalyst promoted by two metal oxides with different reducibilities: properties and performance in the selective hydrogenation of acetylene. App Catal A-Gen 471:80–83

    Article  CAS  Google Scholar 

  94. Pattamakomsan K, Ehret E, Morfin F et al (2011) Selective hydrogenation of 1,3-butadiene over Pd and Pd-Sn catalysts supported on different phases of alumina. Catal Today 164(1):28–33

    Article  CAS  Google Scholar 

  95. Borodzinski A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 50(3):379–469

    Article  CAS  Google Scholar 

  96. Garcia-Mota M, Bridier B, Perez-Ramirez J et al (2010) Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J Catal 273(2):92–102

    Article  CAS  Google Scholar 

  97. Lopez N, Bridier B, Perez-Ramirez J (2008) Discriminating reasons for selectivity enhancement of CO in alkyne hydrogenation on palladium. J Phys Chem C 112(25):9346–9350

    Article  CAS  Google Scholar 

  98. Zea H, Lester K, Datye AK et al (2005) The influence of Pd-Ag catalyst for ethylene hydrogenation restructuring on the activation energy in ethylene-acetylene mixtures. App Catal A-Gen 282(1–2):237–245

    Article  CAS  Google Scholar 

  99. Azizi Y, Petit C, Pitchon V (2008) Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. J Catal 256(2):338–344

    Article  CAS  Google Scholar 

  100. Bridier B, Hevia MAG, Lopez N et al (2011) Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. J Catal 278(1):167–172

    Article  CAS  Google Scholar 

  101. Praserthdam P, Phatanasri S, Meksikarin J (2000) Activation of acetylene selective hydrogenation catalysts using oxygen containing compounds. Catal Today 63(2–4):209–213

    Article  CAS  Google Scholar 

  102. Ngamsom B, Bogdanchikova N, Borja MA et al (2004) Characterisations of Pd-Ag/Al2O3 catalysts for selective acetylene hydrogenation: effect of pretreatment with NO and N2O. Catal Comm 5(5):243–248

    Article  CAS  Google Scholar 

  103. Panpranot J, Aungkapipattanachai S, Sangvanich T et al (2007) Effect of N2O pretreatment on fresh and regenerated Pd-Ag/α-Al2O3 catalysts during selective hydrogenation of acetylene. React Kinet Catal Lett 91(2):195–202

    Article  CAS  Google Scholar 

  104. Tao J, Yu Z, Liu S (2001) CN Patent 1317367-A

    Google Scholar 

  105. Khrenov EG, Perminova EA, Falkov IG A (1997) RU Patent 2074027-C1

    Google Scholar 

  106. Chamberlain LR, Gibler CJ, Kemp RA et al (1993) US Patent 5177155-A

    Google Scholar 

  107. Park YH, Price GL (1992) Promotional effects of potassium on Pd/Al2O3 selective hydrogenation catalysts. Ind Eng Chem Res 31(2):469–474

    Article  CAS  Google Scholar 

  108. Kim WJ, Kang JH, Ahn IY et al (2004) Effect of potassium addition on the properties of a TiO2-modified Pd catalyst for the selective hydrogenation of acetylene. Appl Catal A-Gen 268(1–2):77–82

    Article  CAS  Google Scholar 

  109. Huang W, Pyrz W, Lobo RF et al (2007) Selective hydrogenation of acetylene in the presence of ethylene on K+-beta-zeolite supported Pd and PdAg catalysts. App Catal A-Gen 333(2):254–263

    Article  CAS  Google Scholar 

  110. Wongwaranon N, Mekasuwandumrong O, Praserthdam P et al (2008) Performance of Pd catalysts supported on nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene. Catal Today 131(1–4):553–558

    Article  CAS  Google Scholar 

  111. Kim WJ, Kang JH, Ahn IY et al (2004) Deactivation behavior of a TiO2-added Pd catalyst in acetylene hydrogenation. J Catal 226(1):226–229

    Article  CAS  Google Scholar 

  112. Ahn IY, Kim WJ, Moon SH (2006) Performance of La2O3 or Nb2O5 added Pd/SiO2 catalysts in acetylene hydrogenation. App Catal A-Gen 308:75–81

    Article  CAS  Google Scholar 

  113. Kang JH, Shin EW, Kim WJ et al (2000) Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides. Catal Today 63(2–4):183–188

    Article  Google Scholar 

  114. Kim WJ, Ahn IY, Lee JH et al (2012) Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catal Comm 24:52–55

    Article  CAS  Google Scholar 

  115. Kim SK, Lee JH, Ahn IY et al (2011) Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. App Catal A-Gen 401(1–2):12–19

    Article  CAS  Google Scholar 

  116. Song S, Dai W, Zhu J et al (2004) Characterization of ethylene fraction selective hydrogenation catalyst using la promoted Al2O3 as support. Petrochem Tech 33(3):197–201

    CAS  Google Scholar 

  117. Liu T, Jin Y, Wei M et al (2003) Selective hydrogenation of FCC light gasoline on the Ni-La/Al2O3 catalyst. J Petrochem Univ 16 (4):24–26, 34

    Google Scholar 

  118. Wang H, Liu ZY, Shi RJ et al (2005) Deactivation and regeneration of amorphous Ru-La-B/ZrO2 catalyst for selective hydrogenation of benzene to cyclohexene. Chin J Catal 26(5):407–411

    CAS  Google Scholar 

  119. Liu SC, Liu Z, Wang Z et al (2008) Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions. Chem Eng J 139(1):157–164

    Article  CAS  Google Scholar 

  120. Sun HJ, Pan YJ, Li SH et al (2013) Selective hydrogenation of benzene to cyclohexene over Ce-promoted Ru catalysts. J Energ Chem 22(5):710–716

    Article  CAS  Google Scholar 

  121. Chen PR, Chew LM, Kostka A et al (2013) The structural and electronic promoting effect of nitrogen-doped carbon nanotubes on supported Pd nanoparticles for selective olefin hydrogenation. Catal Sci Tech 3(8):1964–1971

    Article  CAS  Google Scholar 

  122. Tailleur RG, Nascar JR (2012) Effect of H2S on selective hydrogenation of diolefins using NiPdCex/Si-Al-coated structured packing catalyst. App Catal A-Gen 439:125–134

    Article  CAS  Google Scholar 

  123. Crespo-Quesada M, Dykeman RR, Laurenczy G et al (2011) Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne. J Catal 279(1):66–74

    Article  CAS  Google Scholar 

  124. Wang KJ, Chen YY, Li XS et al (2009) Unusual catalytic performance for selective acetylene hydrogenation over Pd nanoparticles fabricated on N, O-containing organic groups modified silica. Catal Lett 127(3–4):392–399

    Article  CAS  Google Scholar 

  125. Chan CWA, Mahadi AH, Li MMJ et al (2014) Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat Comm 5(5):5787

    Article  CAS  Google Scholar 

  126. Yang B, Burch R, Hardacre C et al (2014) Selective hydrogenation of acetylene over Pd-boron catalysts: a density functional theory study. J Phys Chem C 118(7):3664–3671

    Article  CAS  Google Scholar 

  127. Cooper A, Bachiller-Baeza B, Anderson JA et al (2014) Design of surface sites for the selective hydrogenation of 1,3-butadiene on Pd nanoparticles: Cu bimetallic formation and sulfur poisoning. Catal Sci Tech 4(5):1446–1455

    Article  CAS  Google Scholar 

  128. Shin EW, Choi CH, Chang KS et al (1998) Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catal Today 44(1–4):137–143

    Article  CAS  Google Scholar 

  129. Boitiaux JP, Cosyns J, Robert E (1989) Additive effects in the selective hydrogenation of unsaturated-hydrocarbons on platinum and rhodium catalysts: 1. Influence of nitrogen-containing compounds. Appl Catal 49(2):219–234

    Article  CAS  Google Scholar 

  130. Zhang QW, Li J, Liu XX et al (2000) Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Appl Catal A-Gen 197(2):221–228

    Article  CAS  Google Scholar 

  131. Khan NA, Uhl A, Shaikhutdinov S et al (2006) Alumina supported model Pd-Ag catalysts: a combined STM, XPS, TPD and IRAS study. Surf Sci 600(9):1849–1853

    Article  CAS  Google Scholar 

  132. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal Lett 108(3–4):159–164

    Article  CAS  Google Scholar 

  133. Sheth PA, Neurock M, Smith CM (2005) First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures. J Phys Chem B 109(25):12449–12466

    Article  CAS  Google Scholar 

  134. Ma Y, Diemant T, Bansmann J et al (2011) The interaction of CO with PdAg/Pd(111) surface alloys-A case study of ensemble effects on a bimetallic surface. Phys Chem Chem Phys 13(22):10741–10754

    Article  CAS  Google Scholar 

  135. Gonzalez S, Neyman KM, Shaikhutdinov S et al (2007) On the promoting role of Ag in selective hydrogenation reactions over Pd-Ag bimetallic catalysts: a theoretical study. J Phys Chem C 111(18):6852–6856

    Article  CAS  Google Scholar 

  136. Jin YM, Datye AK, Rightor E et al (2001) The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. J Catal 203(2):292–306

    Article  CAS  Google Scholar 

  137. Mei D, Neurock M, Smith CM (2009) Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: first-principles-based kinetic Monte Carlo simulations. J Catal 268(2):181–195

    Article  CAS  Google Scholar 

  138. Pachulski A, Schodel R, Claus P (2011) Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. App Catal A-Gen 400(1–2):14–24

    Article  CAS  Google Scholar 

  139. Lamberov AA, Egorova SR, Il’yasov IR et al (2007) Changes in the course of reaction and regeneration of a Pd-Ag/Al2O3 catalyst for the selective hydrogenation of acetylene. Kinet Catal 48(1):136–142

    Article  CAS  Google Scholar 

  140. Lee JH, Kim SK, Ahn IY et al (2011) Performance of Pd-Ag/Al2O3 catalysts prepared by the selective deposition of Ag onto Pd in acetylene hydrogenation. Catal Comm 12(13):1251–1254

    Article  CAS  Google Scholar 

  141. Han YX, Peng D, Xu ZY et al (2013) TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chem Comm 49(75):8350–8352

    Article  CAS  Google Scholar 

  142. Kontapakdee K, Panpranot J, Praserthdam P (2007) Effect of Ag addition on the properties of Pd-Ag/TiO2 catalysts containing different TiO2 crystalline phases. Catal Comm 8(12):2166–2170

    Article  CAS  Google Scholar 

  143. Panpranot J, Nakkararuang L, Ngamsom B et al (2005) Synthesis, characterization, and catalytic properties of Pd and Pd-Ag catalysts supported on nanocrystalline TiO2 prepared by the solvothermal method. Catal Lett 103(1–2):53–58

    Article  CAS  Google Scholar 

  144. Osswald J, Giedigkeit R, Jentoft RE et al (2008) Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene—Part I: preparation and structural investigation under reaction conditions. J Catal 258(1):210–218

    Article  CAS  Google Scholar 

  145. Osswald J, Kovnir K, Armbruester M et al (2008) Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene—Part II: surface characterization and catalytic performance. J Catal 258(1):219–227

    Article  CAS  Google Scholar 

  146. Kovnir K, Osswald J, Armbruester M et al (2006) PdGa and Pd3Ga7: highly-selective catalysts for the acetylene partial hydrogenation. In: Studies in surface science and catalysis, vol 162. Elsevier, pp 481–488

    Google Scholar 

  147. Armbruester M, Wowsnick G, Friedrich M et al (2011) Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds. J Am Chem Soc 133(23):9112–9118

    Article  CAS  Google Scholar 

  148. Kovnir K, Armbruester M, Teschner D et al (2009) In situ surface characterization of the intermetallic compound PdGa—A highly selective hydrogenation catalyst. Surf Sci 603(10–12):1784–1792

    Article  CAS  Google Scholar 

  149. Ota A, Armbruester M, Behrens M et al (2011) Intermetallic compound Pd2Ga as a selective catalyst for the semi-hydrogenation of acetylene: from model to high performance systems. J Phys Chem C 115(4):1368–1374

    Article  CAS  Google Scholar 

  150. He Y, Liang L, Liu Y et al (2014) Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst. J Catal 309:166–173

    Article  CAS  Google Scholar 

  151. Bechthold P, Jasen P, Gonzalez E et al (2012) Hydrogen adsorption on PdGa(110): a DFT study. J Phys Chem C 116(33):17518–17524

    Article  CAS  Google Scholar 

  152. Klanjsek M, Gradisek A, Kocjan A et al (2012) PdGa intermetallic hydrogenation catalyst: an NMR and physical property study. J Phys-Cond Matter 24(8):9

    Article  CAS  Google Scholar 

  153. Rosenthal D, Widmer R, Wagner R et al (2012) Surface investigation of intermetallic PdGa(111). Langmuir 28(17):6848–6856

    Article  CAS  Google Scholar 

  154. Bechthold P, Ardenghi JS, Nagel O et al (2014) Hydrogen adsorption on PdGa(100), (111) and (111) surfaces: a DFT study. Int J Hydrogen Energ 39(5):2093–2103

    Article  CAS  Google Scholar 

  155. Prinz J, Gaspari R, Stockl QS et al (2014) Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces. J Phys Chem C 118(23):12260–12265

    Article  CAS  Google Scholar 

  156. Prinz J, Pignedoli CA, Stockl QS et al (2014) Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. J Am Chem Soc 136(33):11792–11798

    Article  CAS  Google Scholar 

  157. Lu FF, Sun DH, Huang JL et al (2014) Plant-mediated synthesis of Ag-Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2(5):1212–1218

    Article  CAS  Google Scholar 

  158. Wei H-H, Yen CH, Lin H-W et al (2013) Synthesis of bimetallic Pd-Ag colloids in CO2-expanded hexane and their application in partial hydrogenation of phenylacetylene. J Supercrit Fluids 81:1–6

    Article  CAS  Google Scholar 

  159. Redjala T, Remita H, Apostolescu G et al (2006) Bimetallic Au-Pd and Ag-Pd clusters synthesised by gamma or electron beam radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of buta-1,3-diene. Oil Gas Sci Technol 61(6):789–797

    Article  CAS  Google Scholar 

  160. Sarkany A (1997) Semi-hydrogenation of 1,3-butadiene over Pd-Ag/α-Al2O3 poisoned by hydrocarbonaceous deposits. Appl Catal A-Gen 165(1–2):87–101

    Article  CAS  Google Scholar 

  161. Sarkany A (1997) Self-poisoning and aging of Pd-Ag/Al2O3 in semi-hydrogenation of 1,3-butadiene: Effects of surface inhomogeneity caused by hydrocarbonaceous deposits. In: Studies in surf sci and catalysis, vol 111. Elsevier, pp 111–118

    Google Scholar 

  162. Zhang YY, Diao WJ, Williams CT et al (2014) Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. App Catal A-Gen 469:419–426

    Article  CAS  Google Scholar 

  163. Pei GX, Liu XY, Wang AQ et al (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38(5):2043–2051

    Article  CAS  Google Scholar 

  164. Sarkany A, Horvath A, Beck A (2002) Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl Catal A-Gen 229(1–2):117–125

    Article  CAS  Google Scholar 

  165. Kittisakmontree P, Yoshida H, Fujita S et al (2015) The effect of TiO2 particle size on the characteristics of Au-Pd/TiO2 catalysts. Catal Comm 58:70–75

    Article  CAS  Google Scholar 

  166. Wang Z, Zhang K, Yang K, Liu C (2014) Effect of alkali metal modification on selective hydrogenation of isoprene on Pd-Au/Al2O3 catalysts. China Pet Process Petrochem 45(12):38–42

    Google Scholar 

  167. Zhang K, Wang Z, Ze B et al (2014) Selective hydrogenation of isoprene on Pd-Au/Al2O3 catalysts modified with Bi. Petrochem Tech 43(2):132–137

    Google Scholar 

  168. El Kolli N, Delannoy L, Louis C (2013) Bimetallic Au-Pd catalysts for selective hydrogenation of butadiene: influence of the preparation method on catalytic properties. J Catal 297:79–92

    Article  CAS  Google Scholar 

  169. Kittisakmontree P, Pongthawornsakun B, Yoshida H et al (2013) The liquid-phase hydrogenation of 1-heptyne over Pd-Au/TiO2 catalysts prepared by the combination of incipient wetness impregnation and deposition-precipitation. J Catal 297:155–164

    Article  CAS  Google Scholar 

  170. Pongthawornsakun B, Fujita SI, Arai M et al (2013) Mono- and bi-metallic Au-Pd/TiO2 catalysts synthesized by one-step flame spray pyrolysis for liquid-phase hydrogenation of 1-heptyne. App Catal A-Gen 467:132–141

    Article  CAS  Google Scholar 

  171. Piccolo L, Piednoir A, Bertolini JC (2005) Pd-Au single-crystal surfaces: segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surf Sci 592(1–3):169–181

    Article  CAS  Google Scholar 

  172. Miura H, Terasaka M, Oki K et al (1993) Preparation of eggshell type Pd-Ag and Pd-Au catalysts by selective deposition and hydrogenation of 1,3-butadiene. In: Studies in surface science and catalysis, vol 75. Elsevier, pp 2379–2382

    Google Scholar 

  173. Wang ZQ, Zhou ZM, Zhang R et al (2014) Selective hydrogenation of phenylacetylene over Pd-Cu/γ-Al2O3 catalysts. Acta Phys-Chim Sin 30(12):2315–2322

    CAS  Google Scholar 

  174. McCue AJ, McRitchie CJ, Shepherd AM et al (2014) Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. J Catal 319:127–135

    Article  CAS  Google Scholar 

  175. Kang M, Song MW, Kim KL (2002) SMSI effect on ceria supported Cu-Pd catalysts in the hydrogenation of 1, 3-butadiene. React Kinet Catal Lett 75(1):177–183

    Article  CAS  Google Scholar 

  176. Insorn P, Suriyaphaparkorn K, Kitiyanan B (2013) Selective hydrogenation of 1-hexyne using Pd-Cu and Pd-W supported on alumina catalysts. In: 11th international conference on chemical and process engineering, Pts 1–4 32:847–852

    Google Scholar 

  177. Guczi L, Schay Z, Stefler G et al (1999) Pumice-supported Cu-Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene. J Catal 182(2):456–462

    Article  CAS  Google Scholar 

  178. Mashkovsky IS, Baeva GN, Stakheev AY et al (2014) Novel Pd-Zn/C catalyst for selective alkyne hydrogenation: evidence for the formation of Pd-Zn bimetallic alloy particles. Mendeleev Comm 24(6):355–357

    Article  CAS  Google Scholar 

  179. Tew MW, Emerich H, van Bokhoven JA et al (2011) Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. J Phys Chem C 115(17):8457–8465

    Article  CAS  Google Scholar 

  180. Esmaeili E, Mortazavi Y, Khodadadi AA et al (2012) The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene. Appl Surf Sci 263:513–522

    Article  CAS  Google Scholar 

  181. Choi SH, Lee JS (2000) XAFS study of tin modification of supported palladium catalyst for 1,3-butadiene hydrogenation in the presence of 1-butene. J Catal 193(2):176–185

    Article  CAS  Google Scholar 

  182. Verdier S, Didillon B, Morin S et al (2003) Pd-Sn/Al2O3 catalysts from colloidal oxide synthesis—II. Surface characterization and catalytic properties for buta-1,3-diene selective hydrogenation. J Catal 218(2):288–295

    Google Scholar 

  183. Breinlich C, Haubrich J, Becker C et al (2007) Hydrogenation of 1,3-butadiene on Pd(111) and PdSn/Pd(111) surface alloys under UHV conditions. J Catal 251(1):123–130

    Article  CAS  Google Scholar 

  184. Esmaeili E, Rashidi AM, Khodadadi AA et al (2014) Palladium-Tin nanocatalysts in high concentration acetylene hydrogenation: a novel deactivation mechanism. Fuel Process Technol 120:113–122

    Article  CAS  Google Scholar 

  185. Lederhos CR, Juliana Maccarrone M, Badano JM et al (2011) Hept-1-yne partial hydrogenation reaction over supported Pd and W catalysts. App Catal A-Gen 396(1–2):170–176

    Article  CAS  Google Scholar 

  186. Menezes WG, Altmann L, Zielasek V et al (2013) Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 300:125–135

    Article  CAS  Google Scholar 

  187. Sarkany A, Zsoldos Z, Stefler G et al (1995) Promoter effect of Pd in hydrogenation of 1,3-butadiene over Co-Pd catalysts. J Catal 157(1):179–189

    Article  CAS  Google Scholar 

  188. Zina MS, Ghorbel A (2004) Pd-Mo bimetallic catalysts supported on Y-Zeolite: effect of molybdenum on structural and catalytic properties of palladium in partial hydrogenation of 1,3 butadiene. In: Recent advances in the science and technology of zeolites and related materials, Pts A–C, vol 154. Studies in surface science and catalysis, pp 2364–2370

    Google Scholar 

  189. Miegge P, Rousset JL, Tardy B et al (1994) Pd1Ni99 and Pd5Ni95—Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. J Catal 149(2):404–413

    Article  CAS  Google Scholar 

  190. Gomez G, Belelli PG, Cabeza GF et al (2010) The adsorption of 1,3-butadiene on Pd/Ni multilayers: the interplay between spin polarization and chemisorption strength. J Solid State Chem 183(12):3086–3092

    Article  CAS  Google Scholar 

  191. Jia JF, Haraki K, Kondo JN et al (2000) Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J Phys Chem B 104(47):11153–11156

    Article  CAS  Google Scholar 

  192. Choudhary TV, Sivadinarayana C, Datye AK et al (2003) Acetylene hydrogenation on Au-based catalysts. Catal Lett 86(1–3):1–8

    Article  CAS  Google Scholar 

  193. Murugadoss A, Sorek E, Asscher M (2014) Structure and composition of Au-Cu and Pd-Cu bimetallic catalysts affecting acetylene reactivity. Top Catal 57(10–13):1007–1014

    Article  CAS  Google Scholar 

  194. Sarkany A, Schay Z, Frey K et al (2010) Some features of acetylene hydrogenation on Au-iron oxide catalyst. App Catal A-Gen 380(1–2):133–141

    Article  CAS  Google Scholar 

  195. Liu XY, Li YN, Lee JW et al (2012) Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au-Ag bimetallic catalyst. App Catal A-Gen 439:8–14

    Article  CAS  Google Scholar 

  196. Rodriguez JC, Marchi AJ, Borgna A et al (2001) Gas phase selective hydrogenation of acetylene: importance of the formation of Ni-Co and Ni-Cu bimetallic clusters on the selectivity and coke deposition. In: Studies in surface science and catalysis, vol 139. Elsevier, pp 37–44

    Google Scholar 

  197. Onda A, Komatsu T, Yashima T (2000) Characterization and catalytic properties of Ni-Sn intermetallic compounds in acetylene hydrogenation. Phys Chem Chem Phys 2(13):2999–3005

    Article  CAS  Google Scholar 

  198. Studt F, Abild-Pedersen F, Bligaard T et al (2008) Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320(5881):1320–1322

    Article  CAS  Google Scholar 

  199. Xu JH, Huang YQ, Yang XF et al (2014) Enhancement of acetylene hydrogenation activity over Ni-Zn bimetallic catalyst by doping with Au. J Nanosci Nanotechno 14(9):6894–6899

    Article  CAS  Google Scholar 

  200. Trimm DL, Cant NW, Liu IOY (2011) The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catal Today 178(1):181–186

    Article  CAS  Google Scholar 

  201. Yuanzhi L, Yining F, Jie H et al (2004) Selective liquid hydrogenation of long chain linear alkadienes on molybdenum nitride and carbide modified by oxygen. Chem Eng J 99(3):213–218

    Article  CAS  Google Scholar 

  202. Wu ZL, Hao ZX, Ying PL et al (2000) An IR study on selective hydrogenation of 1,3-butadiene on transition metal nitrides: 1,3-butadiene and 1-butene adsorption on Mo2N/γ-Al2O3 catalyst. J Phys Chem B 104(51):12275–12281

    Article  CAS  Google Scholar 

  203. Hao ZX, Wei ZB, Wang LJ et al (2000) Selective hydrogenation of ethyne on gamma-Mo2N. App Catal A Gen 192(1):81–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hou, R. (2017). Introduction. In: Catalytic and Process Study of the Selective Hydrogenation of Acetylene and 1,3-Butadiene. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0773-6_1

Download citation

Publish with us

Policies and ethics