Advertisement

Li–S and Li–O2 Batteries with High Specific Energy

  • Huamin Zhang
  • Xianfeng Li
  • Hongzhang Zhang
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

This book introduces two important kinds of next-generation batteries: the lithium-sulfur battery and the lithium-air (or lithium-oxygen) battery. Both batteries have very high theoretical specific energy (2600 and 13,000 Wh/kg respectively), which could contribute to a longer use life of electronic devices. Based on the current available literatures, technical reports and data, a comprehensive review is made to introduce the basic principles, historical development, current status and future challenges of both battery technologies.

Keywords

Li–S battery Li–O2 battery High specific energy Sulfur cathode Lithium anode Li-ion conductive electrolyte Energy storage devices Electric vehicles 

References

  1. 1.
    Turner JA (1999) A realizable renewable energy future. Science 285(5428):687–689. doi: 10.1126/science.285.5428.687 CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29. doi: 10.1038/nmat3191 CrossRefGoogle Scholar
  3. 3.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935. doi: 10.1126/science.1212741 CrossRefGoogle Scholar
  4. 4.
    Xiao J (2015) Understanding the lithium sulfur battery system at relevant scales. Adv Energy Mater 5(16). doi: 10.1002/aenm.201501102
  5. 5.
    Herbert D UJ (1962) Electric dry cells and storage battery US Pat, 3043896Google Scholar
  6. 6.
    Kim HS, Jeong C-S, Kim Y-T (2011) Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium–sulfur batteries. J Appl Electrochem 42(2):75–79. doi: 10.1007/s10800-011-0373-1 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bauer I, Thieme S, Brückner J, Althues H, Kaskel S (2014) Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. J Power Sources 251:417–422. doi: 10.1016/j.jpowsour.2013.11.090 CrossRefGoogle Scholar
  8. 8.
    Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources 235:181–186. doi: 10.1016/j.jpowsour.2013.01.132 CrossRefGoogle Scholar
  9. 9.
    Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources 242:65–69. doi: 10.1016/j.jpowsour.2013.05.063 CrossRefGoogle Scholar
  10. 10.
    Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969. doi: 10.1149/1.1806394 CrossRefGoogle Scholar
  11. 11.
    Rosenman A, Elazari R, Salitra G, Markevich E, Aurbach D, Garsuch A (2015) Effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li–S battery systems. J Electrochem Soc 162(3):A470–A473. doi: 10.1149/2.0861503jes CrossRefGoogle Scholar
  12. 12.
    Gu M, Lee J, Kim Y, Kim JS, Jang BY, Lee KT, Kim B-S (2014) Inhibiting shuttle effect in lithium-sulfur battery using layer-by-layer assembled ion-permselective separator. RSC Adv. doi: 10.1039/c4ra09718a Google Scholar
  13. 13.
    Gu M, Lee J, Kim Y, Kim JS, Jang BY, Lee KT, Kim B-S (2014) Inhibiting the shuttle effect in lithium-sulfur batteries using a layer-by-layer assembled ion-permselective separator. RSC Adv 4(87):46940–46946. doi: 10.1039/c4ra09718a CrossRefGoogle Scholar
  14. 14.
    Togasaki N, Momma T, Osaka T (2016) Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium–oxygen battery. J Power Sources 307:98–104. doi: 10.1016/j.jpowsour.2015.12.123 CrossRefGoogle Scholar
  15. 15.
    Zhong Y, Yang M, Zhou X, Luo Y, Wei J, Zhou Z (2015) Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites. Adv Mater 27(5):806–812. doi: 10.1002/adma.201404611 CrossRefGoogle Scholar
  16. 16.
    Yamada T, Ito S, Omoda R, Watanabe T, Aihara Y, Agostini M, Ulissi U, Hassoun J, Scrosati B (2015) All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics. J Electrochem Soc 162(4):A646–A651. doi: 10.1149/2.0441504jes CrossRefGoogle Scholar
  17. 17.
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6. doi: 10.1038/ncomms7362
  18. 18.
    Li NW, Yin YX, Yang CP, Guo YG (2015) An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 28(9):1853–1858. doi: 10.1002/adma.201504526 CrossRefGoogle Scholar
  19. 19.
    Han Y, Duan X, Li Y, Huang L, Zhu D, Chen Y (2015) Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries. Mater Res Bull 68:160–165. doi: 10.1016/j.materresbull.2015.03.042 CrossRefGoogle Scholar
  20. 20.
    Fan K, Tian Y, Zhang X, Tan J (2015) Application of stabilized lithium metal powder and hard carbon in anode of lithium–sulfur battery. J Electroanal Chem. doi: 10.1016/j.jelechem.2015.10.020 Google Scholar
  21. 21.
    Cheng X-B, Zhang Q (2015) Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. J Mater Chem A 3(14):7207–7209. doi: 10.1039/c5ta00689a CrossRefGoogle Scholar
  22. 22.
    Cao R, Xu W, Lv D, Xiao J, Zhang J-G (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater n/a-n/a. doi: 10.1002/aenm.201402273
  23. 23.
    Camacho-Forero LE, Smith TW, Bertolini S, Balbuena PB (2015) Reactivity at the lithium-metal anode surface of lithium-sulfur batteries. J Phys Chem C. doi: 10.1021/acs.jpcc.5b08254 Google Scholar
  24. 24.
    Zhou X (2014) Sustained room-temperature sodium-ion battery anodes using graphene-templated carbon hybrid. J Phys ChemGoogle Scholar
  25. 25.
    Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J, Yang Y (2014) Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery. J Mater Chem A 2(30):11660. doi: 10.1039/c4ta01709a CrossRefGoogle Scholar
  26. 26.
    Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J Power Sources 246:840–845. doi: 10.1016/j.jpowsour.2013.08.041 CrossRefGoogle Scholar
  27. 27.
    Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X (2014) A lithium anode protection guided highly-stable lithium-sulfur battery. Chem Commun 50(91):14209–14212. doi: 10.1039/C4CC05535G CrossRefGoogle Scholar
  28. 28.
    Kummer JT, Weber N (1968) Sodium-sulfur secondary battery. Sae Trans 76:88-&Google Scholar
  29. 29.
    Fally J, Lasne C, Lazennec Y, Lecars Y, Margotin P (1972) Study of a beta-alumina electrolyte for sodium sulfur battery. J Electrochem Soc 119(3):C110-&Google Scholar
  30. 30.
    Fally J, Lasne C, Lazennec Y, Margotin P (1972) Some aspects of sodium-sulfur battery working. J Electrochem Soc 119(3):C110-&Google Scholar
  31. 31.
    Silverma HP, Seo ET, Gelb GH, Richards NA (1972) Load-leveling applications of sodium-sulfur batteries in large power-plants. J Electrochem Soc 119(8):C214Google Scholar
  32. 32.
    Tischer RP (1972) Sodium-sulfur battery. J Electrochem Soc 119(3):C110-&Google Scholar
  33. 33.
    Fally J, Lasne C, Lazennec Y, Lecars Y, Margotin P (1973) Study of a beta-alumina electrolyte for sodium-sulfur battery. J Electrochem Soc 120(10):1296–1298CrossRefGoogle Scholar
  34. 34.
    Whalen TJ, Tennenho GJ, Meyer C (1973) Influence of composition and microstructure on properties of beta-alumina conductive ceramics for sodium-sulfur battery. Am Ceram Soc Bull 52(4):435–436Google Scholar
  35. 35.
    Jones IW (1974) Sodium-sulfur batteries for traction in United Kingdom. Abstracts of Papers of the American Chemical Society, pp 89–89Google Scholar
  36. 36.
    Weiner SA, Janz GJ, Gordon RS (1974) Sodium-sulfur battery—government, industry, university project. Am Ceram Soc Bull 53(8):602Google Scholar
  37. 37.
    Whalen TJ, Meyer C (1974) Properties and microstructure of conductive ceramics for sodium-sulfur battery. Am Ceram Soc Bull 53(4):344Google Scholar
  38. 38.
    http://www.sionpower.com/index.php (2016) Accessed 3 Aug 2016
  39. 39.
    http://www.polyplus.com/ (2016) Accessed 3 Aug 2016
  40. 40.
    http://www.oxisenergy.com/ (2016) Accessed 3 Aug 2016
  41. 41.
  42. 42.
    Zhang S (2012) Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio. Energies 5(12):5190–5197. doi: 10.3390/en5125190 CrossRefGoogle Scholar
  43. 43.
    Aurbach D, Granot E (1997) The study of electrolyte solutions based on solvents from the “glyme” family (linear polyethers) for secondary Li battery systems. Electrochim Acta 42(4):697–718. doi: 10.1016/s0013-4686(96)00231-9 CrossRefGoogle Scholar
  44. 44.
    Granot D (1996) The study of electrolyte solutions based on solvents from the ccglyme” family (linear polyethers) for secondary Li battery systemsGoogle Scholar
  45. 45.
    Ryu H-S, Ahn H-J, Kim K-W, Ahn J-H, Cho K-K, Nam T-H, Kim J-U, Cho G-B (2006) Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J Power Sources 163(1):201–206. doi: 10.1016/j.jpowsour.2005.12.061 CrossRefGoogle Scholar
  46. 46.
    Ryu HS, Ahn HJ, Kim KW, Ahn JH, Cho KK, Nam TH (2006) Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta 52(4):1563–1566. doi: 10.1016/j.electacta.2006.01.086 CrossRefGoogle Scholar
  47. 47.
    Zhang S, Ueno K, Dokko K, Watanabe M (2015) Recent advances in electrolytes for lithium-sulfur batteries. Adv Energy Mater n/a-n/a. doi: 10.1002/aenm.201500117
  48. 48.
    Lin Z (2015) Developments of electrolyte systems for lithium-sulfur batteries: a review. Front Energy Res. doi: 10.3389/fenrg.2015.00005 Google Scholar
  49. 49.
    Jo G, Jeon H, Park MJ (2015) Synthesis of polymer electrolytes based on poly(ethylene oxide) and an anion-stabilizing hard polymer for enhancing conductivity and cation transport. ACS Macro Lett 4(2):225–230. doi: 10.1021/mz500717j CrossRefGoogle Scholar
  50. 50.
    Zhaoyin W (2014) A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. doi: 10.1039/C4CP03694H,  10.1039/c0xx00000x,  10.1039/b000000x
  51. 51.
    Scheers J, Fantini S, Johansson P (2014) A review of electrolytes for lithium–sulphur batteries. J Power Sources 255:204–218. doi: 10.1016/j.jpowsour.2014.01.023 CrossRefGoogle Scholar
  52. 52.
    Zhang SS (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochim Acta 97:226–230. doi: 10.1016/j.electacta.2013.02.122 CrossRefGoogle Scholar
  53. 53.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162. doi: 10.1016/j.jpowsour.2012.12.102 CrossRefGoogle Scholar
  54. 54.
    Chen R, Liu Z, Li L, Wu F (2013) Electrolyte materials for high energy density lithium-sulfur secondary battery. Chin Sci Bull (Chinese Version) 58(32):3301. doi: 10.1360/972013-661 CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Zhang Y, Gosselink D, Doan TNL, Sadhu M, Cheang H-J, Chen P (2012) Polymer electrolytes for lithium/sulfur batteries. Membranes 2(4):553–564. doi: 10.3390/membranes2030553 CrossRefGoogle Scholar
  56. 56.
    Teran AA, Balsara NP (2011) Effect of lithium polysulfides on the morphology of block copolymer electrolytes. Macromolecules 44(23):9267–9275. doi: 10.1021/ma202091z CrossRefGoogle Scholar
  57. 57.
    Peled E, Sternberg Y, Gorenshtein A, Lavi Y (1989) Lithium-Sulfur battery: evaluation of dioxolane-based electrolytes. J Electrochem Soc 136(6):1621–1625CrossRefGoogle Scholar
  58. 58.
    Chang DR, Lee SH, Kim SW, Kim HT (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery. J Power Sources 112(2):452–460Google Scholar
  59. 59.
    Mikhaylik Y, Tucson A (2014) Electrolytes for lithium sulfur cells. US Patent 8,828,610 B2Google Scholar
  60. 60.
    Xiong S, Kai X, Hong X, Diao Y (2011) Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries. Ionics 18(3):249–254. doi: 10.1007/s11581-011-0628-1 CrossRefGoogle Scholar
  61. 61.
    Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069. doi: 10.1002/adfm.201200696 CrossRefGoogle Scholar
  62. 62.
    Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4. doi: 10.1038/ncomms2513
  63. 63.
    Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614. doi: 10.1016/j.elecom.2006.02.007 CrossRefGoogle Scholar
  64. 64.
    Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201. doi: 10.1002/adma.201002584 CrossRefGoogle Scholar
  65. 65.
    Rajendran S (2004) Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics 167(3–4):335–339. doi: 10.1016/j.ssi.2004.01.020 CrossRefGoogle Scholar
  66. 66.
    Kim S, Jung Y, Lim HS (2004) The effect of solvent component on the discharge performance of lithium–sulfur cell containing various organic electrolytes. Electrochim Acta 50(2–3):889–892. doi: 10.1016/j.electacta.2004.01.093 CrossRefGoogle Scholar
  67. 67.
    Belostotskii AM, Markevich E, Aurbach D (2004) On Li-chelating additives to electrolytes for Li batterres. J Coord Chem 57(12):1047–1056. doi: 10.1080/00958970412331281809 CrossRefGoogle Scholar
  68. 68.
    Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim HJ (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50(2–3):247–254. doi: 10.1016/j.electacta.2004.01.090 CrossRefGoogle Scholar
  69. 69.
    Aurbach D, Schechter A (2004) Advanced liquid electrolyte solutions. Lithium batteries: science and technology, pp 530–573Google Scholar
  70. 70.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686. doi:http://www.nature.com/nmat/journal/v10/n9/abs/nmat3066.html#supplementary-information
  71. 71.
    Capiglia C, Imanishi N, Takeda Y, Henderson WA, Passerini S (2003) Poly(ethylene oxide) LiN(SO[sub 2]CF[sub 2]CF[sub 3])[sub 2] polymer electrolytes. J Electrochem Soc 150(4):A525. doi: 10.1149/1.1557963 CrossRefGoogle Scholar
  72. 72.
    Wang JL, Yang J, Xie JY, Xu NX, Li Y (2002) Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4(6):499–502. doi: 10.1016/S1388-2481(02)00358-2 CrossRefGoogle Scholar
  73. 73.
    Shin JH, Jung SS, Kim KW, Ahn HJ, Ahn JH (2002) Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J Mater Sci: Mater Electron 13(12):727–733. doi: 10.1023/a:1021521207247 Google Scholar
  74. 74.
    Unemoto A, Yasaku S, Nogami G, Tazawa M, Taniguchi M, Matsuo M, Ikeshoji T, S-i Orimo (2014) Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl Phys Lett 105(8):083901. doi: 10.1063/1.4893666 CrossRefGoogle Scholar
  75. 75.
    Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T, Tatsumi T, Kanno R (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242. doi: 10.1016/j.jpowsour.2012.08.041 CrossRefGoogle Scholar
  76. 76.
    Marmorstein D (2002) Solid state lithium/sulfur batteries for electric vehicles: electrochemical and spectroelectrochemical investigationsGoogle Scholar
  77. 77.
    Zhang Y, Zhao Y, Gosselink D, Chen P Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid state lithium/sulfur battery. IonicsGoogle Scholar
  78. 78.
    marmorstein d solid state lithium/sulfur batteries for electric vehicles: electrochemical and spectroelectrochemical investigationsGoogle Scholar
  79. 79.
    Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi T (2008) All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J Power Sources 182(2):621–625. doi: 10.1016/j.jpowsour.2008.03.030 CrossRefGoogle Scholar
  80. 80.
    Song JH, Yeon JT, Jang JY, Han JG, Lee SM, Choi NS (2013) Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J Electrochem Soc 160(6):A873–A881. doi: 10.1149/2.101306jes CrossRefGoogle Scholar
  81. 81.
    Langenhuizen NPW (1998) The effect of mass transport on Li deposition and dissolution. J Electrochem Soc 145(9):3094–3099CrossRefGoogle Scholar
  82. 82.
    Gan H, Takeuchi ES (1996) Lithium electrodes with and without CO2 treatment: electrochemical behavior and effect on high rate lithium battery performance. J Power Sources 62:45–50CrossRefGoogle Scholar
  83. 83.
    Ishikawa M, Yoshitake S, Morita M, Matsuda Y (1994) In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives. J Electrochem Soc 141(12):L159–L161CrossRefGoogle Scholar
  84. 84.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456. doi: 10.1021/ja312241y CrossRefGoogle Scholar
  85. 85.
    Agostini M, Scrosati B, Hassoun J (2015) An advanced lithium-ion sulfur battery for high energy storage. Adv Energy Mater n/a-n/a. doi: 10.1002/aenm.201500481
  86. 86.
    Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348. doi: 10.1016/j.electacta.2012.03.081 CrossRefGoogle Scholar
  87. 87.
    Jozwiuk A, Berkes BB, Wei Sommer H, Janek J, Brezesinski T (2016) The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries. Energy Environ Sci. doi: 10.1039/C6EE00789A Google Scholar
  88. 88.
    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–Sulfur batteries. J Electrochem Soc 156(8):A694. doi: 10.1149/1.3148721 CrossRefGoogle Scholar
  89. 89.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506. doi: 10.1038/nmat2460 CrossRefGoogle Scholar
  90. 90.
    Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513. doi: 10.1021/ja308170k CrossRefGoogle Scholar
  91. 91.
    Yan Y, Yin YX, Xin S, Guo YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem Commun (Camb) 48(86):10663–10665. doi: 10.1039/c2cc36234a CrossRefGoogle Scholar
  92. 92.
    Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed Engl 52(50):13186–13200. doi: 10.1002/anie.201304762 CrossRefGoogle Scholar
  93. 93.
    Pang Q, Tang J, Huang H, Liang X, Hart C, Tam KC, Nazar LF (2015) A nitrogen and sulfur dual-doped carbon derived from Polyrhodanine@Cellulose for advanced lithium-sulfur batteries. Adv Mater 27(39):6021–6028. doi: 10.1002/adma.201502467 CrossRefGoogle Scholar
  94. 94.
    Tang C, Zhang Q, Zhao MQ, Huang JQ, Cheng XB, Tian GL, Peng HJ, Wei F (2014) Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv Mater 26(35):6100–6105. doi: 10.1002/adma.201401243 CrossRefGoogle Scholar
  95. 95.
    Wu F, Li J, Tian Y, Su Y, Wang J, Yang W, Li N, Chen S, Bao L (2015) 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Sci Rep 5:13340. doi: 10.1038/srep13340 CrossRefGoogle Scholar
  96. 96.
    Liu J, Li W, Duan L, Li X, Ji L, Geng Z, Huang K, Lu L, Zhou L, Liu Z, Chen W, Liu L, Feng S, Zhang Y (2015) A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett 15(8):5137–5142. doi: 10.1021/acs.nanolett.5b01919 CrossRefGoogle Scholar
  97. 97.
    Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung Y-E, Char K, Pyun J (2013) The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem 5(6):518–524. doi: 10.1038/nchem.1624 CrossRefGoogle Scholar
  98. 98.
    Kim H, Lee J, Ahn H, Kim O, Park MJ (2015) Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat Commun 6:7278. doi: 10.1038/ncomms8278 CrossRefGoogle Scholar
  99. 99.
    Pang Q, Nazar LF (2016) Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4):4111–4118. doi: 10.1021/acsnano.5b07347 CrossRefGoogle Scholar
  100. 100.
    Wei Seh Z, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu P-C, Cui Y (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331. doi: 10.1038/ncomms2327 CrossRefGoogle Scholar
  101. 101.
    Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk-Shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135(44):16736–16743. doi: 10.1021/ja409508q CrossRefGoogle Scholar
  102. 102.
    Zhang SS (2012) Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J Electrochem Soc 159(8):A1226–A1229. doi: 10.1149/2.039208jes CrossRefGoogle Scholar
  103. 103.
    Jin Z, Xie K, Hong X (2013) Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv 3(23):8889. doi: 10.1039/c3ra41517a CrossRefGoogle Scholar
  104. 104.
    Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61. doi: 10.1016/j.electacta.2014.02.077 CrossRefGoogle Scholar
  105. 105.
    Yao H, Yan K, Li W, Zheng G, Kong D, Seh ZW, Narasimhan VK, Liang Z, Cui Y (2014) Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci 7(10):3381–3390. doi: 10.1039/c4ee01377h CrossRefGoogle Scholar
  106. 106.
    Wei H, Ma J, Li B, Zuo Y, Xia D (2014) Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. ACS Appl Mater Interfaces 6(22):20276–20281. doi: 10.1021/am505807k CrossRefGoogle Scholar
  107. 107.
    Chung S-H, Manthiram A (2014) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24(33):5299–5306. doi: 10.1002/adfm.201400845 CrossRefGoogle Scholar
  108. 108.
    Vizintin A, Patel MUM, Genorio B, Dominko R (2014) Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries. Chemelectrochem 1(6):1040–1045. doi: 10.1002/celc.201402039 CrossRefGoogle Scholar
  109. 109.
    Chung S-H, Manthiram A (2014) High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett 5(11):1978–1983. doi: 10.1021/jz5006913 CrossRefGoogle Scholar
  110. 110.
    Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li–S batteries. Chem Mater 26(11):3403–3410. doi: 10.1021/cm500575q CrossRefGoogle Scholar
  111. 111.
    Li L, Chen Y, Guo X, Zhong B (2015) Preparation of sodium trimetaphosphate and its application as an additive agent in a novel polyvinylidene fluoride based gel polymer electrolyte in lithium sulfur batteries. Polym Chem. doi: 10.1039/c4py01353k Google Scholar
  112. 112.
    Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J Power Sources 242:65–69. doi: 10.1016/j.jpowsour.2013.05.063 CrossRefGoogle Scholar
  113. 113.
    Zu C, Su Y-S, Fu Y, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297. doi: 10.1039/c2cp43394j CrossRefGoogle Scholar
  114. 114.
    Zhang K, Qin F, Fang J, Li Q, Jia M, Lai Y, Zhang Z, Li J (2014) Nickel foam as interlayer to improve the performance of lithium-sulfur battery. J Solid State Electrochem 18(4):1025–1029. doi: 10.1007/s10008-013-2351-5 CrossRefGoogle Scholar
  115. 115.
    Zhang K, Li Q, Zhang L, Fang J, Li J, Qin F, Zhang Z, Lai Y (2014) From filter paper to carbon paper and toward Li–S battery interlayer. Mater Lett 121:198–201. doi: 10.1016/j.matlet.2014.01.151 CrossRefGoogle Scholar
  116. 116.
    Su Y-S, Manthiram A (2012) Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3. doi:1166/ncomms2163Google Scholar
  117. 117.
    Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv Mater 26(9):1360–1365. doi: 10.1002/adma.201304365 CrossRefGoogle Scholar
  118. 118.
    Singhal R, Chung S-H, Manthiram A, Kalra V (2015) Free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries. J Mater Chem A. doi: 10.1039/C4TA06511E Google Scholar
  119. 119.
    Zhang SS (2013) A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery. J Electrochem Soc 160(9):A1421–A1424. doi: 10.1149/2.058309jes CrossRefGoogle Scholar
  120. 120.
    Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18(4):1111–1116. doi: 10.1007/s10008-013-2366-y CrossRefGoogle Scholar
  121. 121.
    Li M, Yang B, Zhang Z, Wang L, Zhang Y (2013) Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature. J Appl Electrochem 43(5):515–521. doi: 10.1007/s10800-013-0535-4 CrossRefGoogle Scholar
  122. 122.
    Jin ZQ, Xie K, Hong XB, Hu ZQ, Liu X (2012) Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources 218:163–167. doi: 10.1016/j.jpowsour.2012.06.100 CrossRefGoogle Scholar
  123. 123.
    Jin Z, Xie K, Hong X, Hu Z, Liu X (2012) Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources 218:163–167. doi: 10.1016/j.jpowsour.2012.06.100 CrossRefGoogle Scholar
  124. 124.
    Jin Z, Xie K, Hong X (2013) Synthesis and electrochemical properties of a perfluorinated ionomer with lithium sulfonyl dicyanomethide functional groups. J Mater Chem A 1(2):342. doi: 10.1039/c2ta00134a CrossRefGoogle Scholar
  125. 125.
    Tang Q, Shan Z, Wang L, Qin X, Zhu K, Tian J, Liu X (2014) Nafion coated sulfur–carbon electrode for high performance lithium–sulfur batteries. J Power Sources 246:253–259. doi: 10.1016/j.jpowsour.2013.07.076 CrossRefGoogle Scholar
  126. 126.
    Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014) Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ Sci. doi: 10.1039/c3ee42223b Google Scholar
  127. 127.
    Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680. doi: 10.1039/c1ee01782a CrossRefGoogle Scholar
  128. 128.
    Wang L, Zhang T, Yang S, Cheng F, Liang J, Chen J (2013) A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. J Energy Chem 22(1):72–77. doi: 10.1016/s2095-4956(13)60009-1 CrossRefGoogle Scholar
  129. 129.
    Atomistic Simulation Group in the Materials Department of Imperial College, Database of Ionic Radii, http://abulafia.mt.ic.ac.uk/shannon/ptable.php (2014) Accessed 4 Dec 2014
  130. 130.
    Yan N, Yang X, Zhou W, Zhang H, Li X, Zhang H (2015) Fabrication of a nano-Li+-channel interlayer for high performance Li–S battery application. RSC Adv 5(33):26273. doi: 10.1039/c5ra01269d CrossRefGoogle Scholar
  131. 131.
    Wang Q, Yan N, Wang M, Qu C, Yang X, Zhang H, Li X, Zhang H (2015) Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl Mater Interfaces 7(45):25002–25006. doi: 10.1021/acsami.5b08887 CrossRefGoogle Scholar
  132. 132.
    Aravindan V, Lee Y-S, Madhavi S (2015) Research progress on negative electrodes for practical Li-Ion batteries: beyond carbonaceous anodes. Adv Energy Mater 5(13):1402225. doi: 10.1002/aenm.201402225 CrossRefGoogle Scholar
  133. 133.
    Yuvaraj S, Selvan RK, Lee YS (2016) An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Adv 6(26):21448–21474. doi: 10.1039/c5ra23503k CrossRefGoogle Scholar
  134. 134.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443. doi: 10.1016/j.jpowsour.2013.11.103 CrossRefGoogle Scholar
  135. 135.
    Abraham KM, Jiang Z (1995) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 27(1):1–5Google Scholar
  136. 136.
    Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li–O2 battery. Science 337 (6094):563–566Google Scholar
  137. 137.
    Read J, Read J (2005) Ether-Based electrolytes for the lithium/oxygen organic electrolyte battery. J Electrochem Soc 153(1):A96–A100CrossRefGoogle Scholar
  138. 138.
    Takeshi O, Aurelie D, Michael H, Petr N, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393CrossRefGoogle Scholar
  139. 139.
    Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-Air batteries with carbonate-based liquid electrolytes. Electrochemistry 78(5):403–405CrossRefGoogle Scholar
  140. 140.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047. doi: 10.1021/ja2021747 CrossRefGoogle Scholar
  141. 141.
    Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes †. Angew Chem Int Ed 50(37):8609–8613CrossRefGoogle Scholar
  142. 142.
    Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Vincent G, Fanny B, Petr N, Duncan G, Jean-Marie T, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 50(28):6351–6355CrossRefGoogle Scholar
  143. 143.
    Mccloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) Limitations in rechargeability of Li–O2 batteries and possible origins. J Phys Chem Lett 3(20):3043–3047CrossRefGoogle Scholar
  144. 144.
    Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium—air battery. J Phys Chem C (ACS Publications). American Chemical SocietyGoogle Scholar
  145. 145.
    Lopez N, Graham DJ, Jr MGR, Alliger GE, Shaohorn Y, Cummins CC, Nocera DG (2012) Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Science 335(6067):450–453Google Scholar
  146. 146.
    Sun B, Zhang J, Munroe P, Ahn HJ, Wang G (2013) Hierarchical NiCO2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li–O2 batteries. Electrochem Commun 31(6):88–91CrossRefGoogle Scholar
  147. 147.
    Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2013) Studies of Li-Air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160(2):A259–A267CrossRefGoogle Scholar
  148. 148.
    Chen Y, Freunberger SA, Peng Z, Bardé F, Bruce PG (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134(18):7952–7957. doi: 10.1021/ja302178w CrossRefGoogle Scholar
  149. 149.
    Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D (2013) A rechargeable Li–O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte. J Am Chem Soc 135(6):2076–2079CrossRefGoogle Scholar
  150. 150.
    Allen CJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Oxygen electrode rechargeability in an ionic liquid for the Li–air battery. J Phys Chem Lett 2(19):2420–2424CrossRefGoogle Scholar
  151. 151.
    Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer AA, Sun YK, Aurbach D (2015) Catalytic behavior of lithium nitrate in Li–O2 Cells. Acs Appl Mater Interfaces 7(30)Google Scholar
  152. 152.
    Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem 126(15):4007–4012CrossRefGoogle Scholar
  153. 153.
    Liu T, Leskes M, Yu W, Moore AJ, Zhou L, Bayley PM, Kim G, Grey CP (2015) Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260):530–533CrossRefGoogle Scholar
  154. 154.
    Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5(6):489–494CrossRefGoogle Scholar
  155. 155.
    Xie B, Lee HS, Li H, Yang XQ, McBreen J, Chen LQ (2008) New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun 10(8):1195–1197. doi: 10.1016/j.elecom.2008.05.043 CrossRefGoogle Scholar
  156. 156.
    Zheng D, Lee HS, Yang XQ, Qu D (2013) Electrochemical oxidation of solid Li2O2 in non-aqueous electrolyte using peroxide complexing additives for lithium–air batteries. Electrochem Commun 28(28):17–19CrossRefGoogle Scholar
  157. 157.
    Wu X, Jie X, Wang D, Jian Z, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224CrossRefGoogle Scholar
  158. 158.
    Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585CrossRefGoogle Scholar
  159. 159.
    Lei Y, Lu J, Luo X, Wu T, Du P, Zhang X, Ren Y, Wen J, Miller DJ, Miller JT (2013) Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett 13(9):4182–4189CrossRefGoogle Scholar
  160. 160.
    Jung H-G, Kim H-S, Park J-B, Oh I-H, Hassoun J, Yoon CS, Scrosati B, Sun Y-K (2012) A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. Nano Lett 12(8):4333–4335. doi: 10.1021/nl302066d CrossRefGoogle Scholar
  161. 161.
    Qin Y, Lu J, Du P, Chen Z, Ren Y, Wu T, Miller JT, Wen J, Miller DJ, Zhang Z (2012) In-situ fabrication of porous-carbon-supported [small alpha]-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteryGoogle Scholar
  162. 162.
    Zhang JG, Wang D, Wu X, Xiao J, Williford RE (2010) Ambient operation of Li/Air batteries. J Power Sources 195(13):4332–4337CrossRefGoogle Scholar
  163. 163.
    Mitchell RR, Gallant BM, Thompson CV, Yang SH (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4(8):2952–2958CrossRefGoogle Scholar
  164. 164.
    Mitchell RR, Gallant BM, Shao-Horn Y, Thompson CV (2013) Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J Phys Chem Lett 4(7):1060–1064. doi: 10.1021/jz4003586 CrossRefGoogle Scholar
  165. 165.
    Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, Yang SH (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116(39):20800–20805CrossRefGoogle Scholar
  166. 166.
    Yoo E, Zhou H (2011) Li–air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026. doi: 10.1021/nn200084u CrossRefGoogle Scholar
  167. 167.
    Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang J-G (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11(11):5071–5078. doi: 10.1021/nl203332e CrossRefGoogle Scholar
  168. 168.
    Wang ZL, Xu D, Xu JJ, Zhang LL, Zhang XB (2012) Lithium ion batteries: graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li–O2 batteries (Adv. Funct. Mater. 17/2012). Adv Funct Mater 22(17):3699–3705Google Scholar
  169. 169.
    Harding JR, Lu YC, Tsukada Y, Shaohorn Y (2012) Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. Phys Chem Chem Phys 14(30):10540–10546CrossRefGoogle Scholar
  170. 170.
    Sun B, Munroe P, Wang G (2013) Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rep 3:2247. doi: 10.1038/srep02247, http://www.nature.com/articles/srep02247#supplementary-information
  171. 171.
    Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182. doi: 10.1016/j.jpowsour.2007.06.180 CrossRefGoogle Scholar
  172. 172.
    Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J Am Chem Soc 132(35):12170–12171. doi: 10.1021/ja1036572 CrossRefGoogle Scholar
  173. 173.
    Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254CrossRefGoogle Scholar
  174. 174.
    Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192CrossRefGoogle Scholar
  175. 175.
    Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2010) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114–130CrossRefGoogle Scholar
  176. 176.
    Abraham KM, Jiang ZA (1995) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  177. 177.
    Shui JL, Karan NK, Balasubramanian M, Li SY, Liu DJ (2012) Fe/N/C composite in Li–O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J Am Chem Soc 134(40):16654–16661CrossRefGoogle Scholar
  178. 178.
    Zhu C, Choi JY, Wang H, Hui L, Chen Z (2011) Highly durable and active non-precious air cathode catalyst for zinc air battery. J Power Sources 196(7):3673–3677CrossRefGoogle Scholar
  179. 179.
    Qi J, Jiang L, Jiang Q, Wang S, Sun G (2010) Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction. J Phys Chem C 114(42):18159–18166CrossRefGoogle Scholar
  180. 180.
    Zhang K, Zhang L, Chen X, He X, Wang X, Dong S, Han P, Zhang C, Wang S, Gu L (2013) Mesoporous cobalt molybdenum nitride: a highly active bifunctional electrocatalyst and its application in lithium–O2 batteries. J Phys Chem C 117(2):858–865CrossRefGoogle Scholar
  181. 181.
    Li F, Ohnishi R, Yamada Y, Kubota J, Domen K, Yamada A, Zhou H (2013) Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li–O2 batteries. Chem Commun 49(12):1175–1177. doi: 10.1039/C2CC37042E CrossRefGoogle Scholar
  182. 182.
    Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K (2010) Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem Commun 46(40):7492–7494CrossRefGoogle Scholar
  183. 183.
    Ríos E, Reyes H, Ortiz J, Gautier JL (2005) Double channel electrode flow cell application to the study of HO2 production on MnxCo3–xO4 (0≤x≤1) spinel films. Electrochim Acta 50(13):2705–2711CrossRefGoogle Scholar
  184. 184.
    Koninck MD, Poirier SC, Marsan B (2007) CuxCo3−xO4 used as bifunctional electrocatalyst II. Electrochemical characterization for the oxygen reduction reaction. J Electrochem Soc 154(4):A381–A388CrossRefGoogle Scholar
  185. 185.
    Nikolova V, Iliev P, Petrov K, Vitanov T, Zhecheva E, Stoyanova R, Valov I, Stoychev D (2008) Electrocatalysts for bifunctional oxygen/air electrodes. J Power Sources 185(2):727–733CrossRefGoogle Scholar
  186. 186.
    Du J, Pan Y, Zhang T, Han X, Cheng F, Chen J (2012) Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction. J Mater Chem 22(22):15812–15818CrossRefGoogle Scholar
  187. 187.
    Chinnusamy T, Rodionov V, Kühn FE, Reiser O (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3(1):79–84CrossRefGoogle Scholar
  188. 188.
    Prakash J, Tryk D, Yeager E (1990) Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications. J Power Sources 29(90):413–422CrossRefGoogle Scholar
  189. 189.
    Akazawa T, Inaguma Y, Katsumata T, Hiraki K, Takahashi T (2004) Flux growth and physical properties of pyrochlore Pb2Ru2O6.5 single crystals. J Cryst Growth 271(3–4):445–449CrossRefGoogle Scholar
  190. 190.
    Jin S, Gasteiger H, Yabuuchi N, Goodenough J, Yang SH (2011) Design principles for oxygen reduction activity on perovskite oxides in alkaline environmentGoogle Scholar
  191. 191.
    Yuasa M, Nishida M, Kida T, Yamazoe N, Shimanoe K (2011) Bi-functional oxygen electrodes using LaMnO3/LaNiO3 for rechargeable metal-air batteries. J Electrochem Soc 158(5):A605–A610CrossRefGoogle Scholar
  192. 192.
    Yuasa M, Imamura H, Nishida M, Kida T, Shimanoe K (2012) Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries. Electrochem Commun 24(10):50–52CrossRefGoogle Scholar
  193. 193.
    Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Orikasa Y, Uchimoto Y, Takano H, Ohguri N (2013) Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J Am Chem Soc 135(30):11125–11130CrossRefGoogle Scholar
  194. 194.
    Ohkuma H, Uechi I, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2013) Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries. J Power Sources 223(223):319–324CrossRefGoogle Scholar
  195. 195.
    Zhang Z, Wang X, Cui G, Zhang A, Zhou X, Xu H, Gu L (2014) NiCo2S4 sub-micron spheres: an efficient non-precious metal bifunctional electrocatalyst. Nanoscale 6(7):3540–3544CrossRefGoogle Scholar
  196. 196.
    Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Acs Appl Mater Interfaces 5(11):5002–5008CrossRefGoogle Scholar
  197. 197.
    Crowther O, Keeny D, Moureau DM, Meyer B, Salomon M, Hendrickson M (2012) Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J Power Sources 202(1):347–351CrossRefGoogle Scholar
  198. 198.
    Zhang T, Zhou H (2012) From Li–O2 to Li–air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew Chem Int Ed 51(44):11062–11067. doi: 10.1002/anie.201204983 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianChina

Personalised recommendations