Skip to main content

Large Predispersion for Reduction of Intrachannel Nonlinear Impairments in Strongly Dispersion-Managed Transmissions

  • Conference paper
  • First Online:
Electronics, Communications and Networks V

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 382))

  • 1009 Accesses

Abstract

Predispersion for reduction of intrachannel nonlinear impairments in quasi-linear strongly dispersion-managed transmission system is analyzed in detail by numerical simulations. We show that for a moderate amount of predispersion, there is an optimal value at which reduction of the nonlinear impairments can be obtained, which is consistent with previous well-known predictions. However, we found improved transmission performance than that of the previous predictions can be obtained if predispersion is increased to some extent. For large predispersion, the nonlinear impairments reduce monotonically with increasing predispersion, and tend to become stable when predispersion is further increased. Thus, transmission performance can be efficiently improved by inserting a high-dispersive element, such as a chirped fiber bragg grating (CFBG), at the input end of the transmission link to broaden the signal pulses while, at the output end, using another CFBG with the opposite dispersion to recompress the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, G.P.: Applications of Nonlinear Fiber Optics, 2nd edn. Academic Press, New York (2008)

    Google Scholar 

  2. Mamyshev, P.V., Mamysheva, N.A.: Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing. Opt. Lett. 24, 1454–1456 (1999)

    Article  Google Scholar 

  3. Johannisson, P., Anderson, D., Berntson, A., Martensson, J.: Generation and dynamics of ghost pulses in strongly dispersion-managed fiber-optic communication systems. Opt. Lett. 26, 1227–1229 (2001)

    Article  Google Scholar 

  4. Lefrançois, M., Barnasson, E., Charlet, G., Antona, J.C., Bigo, S.: Numerical discrimination of intrachannel cross-phase modulation and intrachannel four-wave mixing and their respective effect on 40 Gbit/s transmissions. Opt. Lett. 31, 432–434 (2006)

    Article  Google Scholar 

  5. Killey, R.I., Thiele, H.J., Mikhailov, V., Bayvel, P.: Reduction of intrachannel nonlinear distortion in 40-Gb/s WDM transmission over standard fiber. IEEE Photon. Technol. Lett. 12, 1624–1626 (2000)

    Article  Google Scholar 

  6. Mecozzi, A., Clausen, C.B., Shtaif, M.: System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett. 12, 1633–1635 (2000)

    Article  Google Scholar 

  7. Kumar, S., Mauro, J.C., Raghavan, S., Chowdhury, D.Q.: Intrachannel nonlinear penalties in dispersion-managed transmission systems. IEEE J. Sel. Top. Quant. Electron. 8, 626–631 (2002)

    Article  Google Scholar 

  8. Mecozzi, A., Clausen, C.B., Shtaif, M., Park, S.G., Gnauck, A.H.: Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 13, 445–447 (2001)

    Article  Google Scholar 

  9. Striegler, A.G., Schmauss, B.: Compensation of intrachannel effects in symmetric dispersion-managed transmission systems. J. Lightwave Technol. 22, 1877–1882 (2004)

    Article  Google Scholar 

  10. Wei, H., Plant, D.V.: Intra-channel nonlinearity compensation with scaled translational symmetry. Opt. Express 12, 4282–4296 (2004)

    Article  Google Scholar 

  11. Liu, X., Wei, X., Gnauck, A.H., Xu, C., Wickham, L.K.: Suppression of intrachannel four-wave-mixing–induced ghost pulses in high-speed transmissions by phase inversion between adjacent marker blocks. Opt. Lett. 27, 1177–1179 (2002)

    Article  Google Scholar 

  12. Winzer, P.J., Gnauck, A.H., Raybon, G., Chandrasekhar, S., Su, S.Y., Leuthold, J.: 40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km. IEEE Photon. Technol. Lett. 15, 766–768 (2003)

    Article  Google Scholar 

  13. Kanaev, A.V., Luther, G.G., Kovanis, V., Bickham, S.R., Conradi, J.: Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission. J. Lightwave Technol. 21, 1486–1489 (2003)

    Article  Google Scholar 

  14. Gill, D.M., Liu, X., Wei, X., Banerjee, S., Su, W.: π/2 alternate-phase ON–OFF keyed 40-Gb/s transmission on standard single-mode fiber. IEEE Photon. Technol. Lett. 15, 1776–1778 (2003)

    Google Scholar 

  15. Appathurai, S., Mikhailov, V., Killey, R.I., Bayvel, P.: Investigation of the optimum alternate-phase RZ modulation format and its effectiveness in the suppression of intrachannel nonlinear distortion in 40-Gbit/s transmission over standard single-mode fiber. IEEE J. Sel. Top. Quant. Electron. 10, 239–249 (2004)

    Article  Google Scholar 

  16. Alic, N., Fainman, Y.: Data-dependent phase coding for suppression of ghost pulses in optical fibers. IEEE Photon. Technol. Lett. 16, 1212–1214 (2004)

    Article  Google Scholar 

  17. Zou, M., Chen, M., Xie, S.: Suppression of ghost pulses in 40 Gbps optical transmission systems with fixed-pattern phase modulation. Opt. Express 13, 2251–2255 (2005)

    Article  Google Scholar 

  18. Batshon, H.G., Djordjevic, I.B., Vasic, B.V.: An improved technique for suppression of intrachannel four-wave mixing in 40-Gb/s optical transmission systems. IEEE Photon. Technol. Lett. 19, 67–69 (2007)

    Article  Google Scholar 

  19. Forzati, M., Berntson, A., Martensson, J., Djupsjobacka, A.: Asynchronous phase modulation for the suppression of IFWM. J. Lightwave Technol. 25, 2969–2975 (2007)

    Article  Google Scholar 

  20. Shapiro, E.G., Fedoruk, M.P., Turitsyn, S.K., Shafarenko, A.: Reduction of nonlinear intrachannel effects by channel asymmetry in transmission lines with strong bit overlapping. IEEE Photon. Technol. Lett. 15, 1473–1475 (2003)

    Article  Google Scholar 

  21. Vasic, B., Rao, V.S., Djordjevic, I.B., Kostuk, R.K., Gabitov, I.: Ghost pulse reduction in 40 Gb/s systems using line coding. IEEE Photon. Technol. Lett. 16, 1784–1786 (2004)

    Article  Google Scholar 

  22. Djordjevic, I.B., Chilappagari, S.K., Vasic, B.: Suppression of intrachannel nonlinear effects using pseudoternary constrained codes. J. Lightwave Technol. 24, 769–774 (2006)

    Article  Google Scholar 

  23. Shafarenko, A., Turitsyn, K.S., Turitsyn, S.K.: Information-theory analysis of skewed coding for suppression of pattern-dependent errors in digital communications. IEEE Trans. Commun. 55, 237–241 (2007)

    Article  Google Scholar 

  24. Slater, B., Boscolo, S., Shafarenko, A., Turitsyn, S.K.: Mitigation of patterning effects at 40 Gbits/s by skewed channel pre-encoding. J. Opt. Netw. 6, 984–990 (2007)

    Article  Google Scholar 

  25. Shafarenko, A., Skidin, A., Turitsyn, S.K.: Weakly-constrained codes for suppression of patterning effects in digital communications. IEEE Trans. Commun. 58, 2845–2854 (2010)

    Article  Google Scholar 

  26. Liu, X., Chandrasekhar, S., Winzer, P.J., Tkach, R.W., Chraplyvy, A.R.: Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves. J. Lightwave Technol. 32, 766–775 (2014)

    Article  Google Scholar 

  27. Yim, H.B., Lee, S.R.: Compensation characteristics of the distorted WDM signals depending on the variation degree of RDPS random variables in the optical links with dispersion management and optical phase conjugation. Int. J. Control Autom. 7, 1–8 (2014)

    Google Scholar 

  28. Eliasson, H., Johannisson, P., Karlsson, M., Andrekson, P.A.: Mitigation of nonlinearities using conjugate data repetition. Opt. Express 23, 2392–2402 (2015)

    Article  Google Scholar 

  29. Kuo, B.P.P., Myslivets, E., Wiberg, A.O.J., Zlatanovic, S., Bres, C.S., Moro, S., Gholami, F., Peric, A., Alic, N., Radic, S.: Transmission of 640-Gb/s RZ-OOK channel over 100-km SSMF by wavelength-transparent conjugation. J. Lightwave Technol. 29, 516–523 (2011)

    Article  Google Scholar 

  30. Ip, E.M., Kahn, J.M.: Fiber impairment compensation using coherent detection and digital signal processing. J. Lightwave Technol. 28, 502–519 (2010)

    Article  Google Scholar 

  31. Millar, D.S., Makovejs, S., Behrens, C., Hellerbrand, S., Killey, R.I., Bayvel, P., Savory, S.J.: Mitigation of fiber nonlinearity using a digital coherent receiver. IEEE J. Sel. Top. Quant. Electron. 16, 1217–1226 (2010)

    Article  Google Scholar 

  32. Kumar, S., Shao, J., Liang, X.: Impulse response of nonlinear schrodinger equation and its implications for pre-dispersed fiber-optic communication systems. Opt. Express 22, 32282–32292 (2014)

    Article  Google Scholar 

  33. Turitsyn, S., Sorokina, M., Derevyanko, S.: Dispersion-dominated nonlinear fiber-optic channel. Opt. Lett. 37, 2931–2933 (2012)

    Article  Google Scholar 

  34. Zweck, J., Menyuk, C.R.: Analysis of four-wave mixing between pulses in high-data-rate quasi-linear subchannel-multiplexed systems. Opt. Lett. 27, 1235–1237 (2002)

    Article  Google Scholar 

  35. Shiner, A.D., Reimer, M., Borowiec, A., Gharan, S.O., Gaudette, J., Mehta, P., Charlton, D., Roberts, K., O’Sullivan, M.: Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system. Opt. Express 22, 20366–20374 (2014)

    Article  Google Scholar 

  36. Möller, L., Su, Y., Raybon, G., Liu, X.: Polarization mode dispersion supported transmission in 40 Gb/s long Haul systems. IEEE Photon. Technol. Lett. 15, 335–337 (2003)

    Article  Google Scholar 

  37. Kumar, S.: Intrachannel four-wave mixing in dispersion managed RZ systems. IEEE Photon. Technol. Lett. 13, 800–802 (2001)

    Article  Google Scholar 

  38. Essiambre, R.J., Raybon, G., Mikkelsen, B.: Optical fiber telecommunication, vol. 4B. Academic Press, San Diego, CA (2002)

    Google Scholar 

  39. Ablowitz, M.J., Hirooka, T.: Resonant nonlinear intrachannel interactions in strongly dispersion-managed transmission systems. Opt. Lett. 25, 1750–1752 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project of Shenzhen City (No. JC201105170655A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hua Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Cao, WH. (2016). Large Predispersion for Reduction of Intrachannel Nonlinear Impairments in Strongly Dispersion-Managed Transmissions. In: Hussain, A. (eds) Electronics, Communications and Networks V. Lecture Notes in Electrical Engineering, vol 382. Springer, Singapore. https://doi.org/10.1007/978-981-10-0740-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0740-8_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0738-5

  • Online ISBN: 978-981-10-0740-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics