Skip to main content

Single-Molecule Sequencing

  • Chapter
  • First Online:
Single-Molecule Electronics

Abstract

In this chapter, the use of single-molecule conductance for DNA sequencing, a principle target of the $1,000 Genome Project, will be discussed. Since starting the project, numerous universities and companies have attempted to develop single-molecule sequencers but have not yet demonstrated a proof of concept. A major challenge has been the fabrication of nanoelectrodes with a 1 nm gap, equal to the diameter of single-stranded DNA molecules. The breakthrough discovery of the use of tunneling currents was required to perform single-molecule electrical sequencing. This discovery led to a proof of concept using a chemically modified scanning tunneling microscope (STM) and mechanically controllable break junction (MCBJ). These single-molecule measurement technologies are now being developed for application studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy S et al (2007) Plos Biol 5:2113

    Article  CAS  Google Scholar 

  2. Wheeler DA et al (2008) Nature 452:872

    Article  CAS  Google Scholar 

  3. Manolio TA, Brooks LD, Collins FS (2008) J Clin Invest 118:1590

    Article  CAS  Google Scholar 

  4. Lander ES et al (2001) Nature 409:860

    Article  CAS  Google Scholar 

  5. Feng SH, Jacobsen SE, Reik W (2010) Science 330:622

    Article  CAS  Google Scholar 

  6. Xu X et al (2011) Nature 475:189

    Article  CAS  Google Scholar 

  7. Chen JF et al (2013) Nat Commun 4:1595

    Article  Google Scholar 

  8. Schloss JA (2008) Nat Biotechnol 26:1113

    Article  CAS  Google Scholar 

  9. Mardis ER (2011) Nature 470:198

    Article  CAS  Google Scholar 

  10. Kircher M, Kelso J (2010) Bioessays 32:524

    Article  CAS  Google Scholar 

  11. Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) Nat Rev Microbiol 10:599

    Article  CAS  Google Scholar 

  12. Metzker ML (2010) Nat Rev Genet 11:31

    Article  CAS  Google Scholar 

  13. Holt RA, Jones SJM (2008) Genome Res 18:839

    Article  CAS  Google Scholar 

  14. Rothberg JM et al (2011) Nature 475:348

    Article  CAS  Google Scholar 

  15. Zwolak M, Di Ventra M (2008) Rev Mod Phys 80:141

    Article  Google Scholar 

  16. Branton D et al (2008) Nat Biotechnol 26:1146

    Article  CAS  Google Scholar 

  17. Venkatesan BM, Bashir R (2011) Nat Nanotechnol 6:615

    Article  CAS  Google Scholar 

  18. Taniguchi M (2015) Anal Chem 87:188

    Article  CAS  Google Scholar 

  19. Dekker C (2007) Nat Nanotechnol 2:209

    Article  CAS  Google Scholar 

  20. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  21. Taniguchi M, Kawai T (2006) Physica E 33:1

    Article  CAS  Google Scholar 

  22. Zwolak M, Di Ventra M (2005) Nano Lett 5:421

    Article  CAS  Google Scholar 

  23. Huang S et al (2010) Nat Nanotechnol 5:868

    Article  CAS  Google Scholar 

  24. Chang S, He J, Kibel A, Lee M, Sankey O, Zhang P, Lindsay S (2009) Nat Nanotechnol 4:297

    Article  CAS  Google Scholar 

  25. Chang SA, Huang S, He J, Liang F, Zhang PM, Li SQ, Chen X, Sankey O, Lindsay S (2010) Nano Lett 10:1070

    Article  CAS  Google Scholar 

  26. Tsutsui M, Taniguchi M, Yokota K, Kawai T (2010) Nat Nanotechnol 5:286

    Article  CAS  Google Scholar 

  27. Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M, Kawai T (2012) Sci Rep 2:501

    Article  Google Scholar 

  28. Ohshiro T, Tsutsui M, Yokota K, Furuhashi M, Taniguchi M, Kawai T (2014) Nat Nanotechnol 9:835

    Article  CAS  Google Scholar 

  29. Tsutsui M, Matsubara K, Ohshiro T, Furuhashi M, Taniguchi M, Kawai T (2011) J Am Chem Soc 133:9124

    Article  CAS  Google Scholar 

  30. Krems M, Zwolak M, Pershin YV, Di Ventra M (2009) Biophys J 97:1990

    Article  CAS  Google Scholar 

  31. Lagerqvist J, Zwolak M, Di Ventra M (2006) Nano Lett 6:779

    Article  CAS  Google Scholar 

  32. Lagerqvist J, Zwolak M, Di Ventra M (2007) Biophys J 93:2384

    Article  CAS  Google Scholar 

  33. Yokota K, Tsutsui M, Taniguchi M (2014) Rsc Adv 4:15886

    Article  CAS  Google Scholar 

  34. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge University Press, Cambridge

    Google Scholar 

  35. Kim VN, Han J, Siomi MC (2009) Nat Rev Mol Cell Biol 10:126

    Article  CAS  Google Scholar 

  36. Ganz T (2003) Nat Rev Immunol 3:710

    Article  CAS  Google Scholar 

  37. Zasloff M (2002) Nature 415:389

    Article  CAS  Google Scholar 

  38. Lewis RJ, Garcia ML (2003) Nat Rev Drug Discov 2:790

    Article  CAS  Google Scholar 

  39. Peschel A, Sahl HG (2006) Nat Rev Microbiol 4:529

    Article  CAS  Google Scholar 

  40. Haass C, Selkoe DJ (2007) Nat Rev Mol Cell Biol 8:101

    Article  CAS  Google Scholar 

  41. Hancock REW, Sahl HG (2006) Nat Biotechnol 24:1551

    Article  CAS  Google Scholar 

  42. Brogden KA (2005) Nat Rev Microbiol 3:238

    Article  CAS  Google Scholar 

  43. Hruby VJ (2002) Nat Rev Drug Discov 1:847

    Article  CAS  Google Scholar 

  44. Purcell AW, McCluskey J, Rossjohn J (2007) Nat Rev Drug Discov 6:404

    Article  CAS  Google Scholar 

  45. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Nat Rev Drug Discov 11:37

    CAS  Google Scholar 

  46. Mann M, Jensen ON (2003) Nat Biotechnol 21:255

    Article  CAS  Google Scholar 

  47. Bode AM, Dong ZG (2004) Nat Rev Cancer 4:793

    Article  CAS  Google Scholar 

  48. Westermann S, Weber K (2003) Nat Rev Mol Cell Biol 4:938

    Article  CAS  Google Scholar 

  49. Gallego M, Virshup DM (2007) Nat Rev Mol Cell Biol 8:139

    Article  CAS  Google Scholar 

  50. Walsh G, Jefferis R (2006) Nat Biotechnol 24:1241

    Article  CAS  Google Scholar 

  51. Witze ES, Old WM, Resing KA, Ahn NG (2007) Nat Methods 4:798

    Article  CAS  Google Scholar 

  52. Zhao YA et al (2014) Nat Nanotechnol 9:466

    Article  CAS  Google Scholar 

  53. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. Acm Trans Intell Syst Technol 2:27

    Google Scholar 

  54. Burges CJC (1998) Data Min Knowl Discov 2:121

    Article  Google Scholar 

  55. Hsu CW, Lin CJ (2002) IEEE Trans Neural Netw 13:415

    Article  Google Scholar 

  56. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Mach Learn 46:389

    Article  Google Scholar 

  57. Suykens JAK, Vandewalle J (1999) Neural Process Lett 9:293

    Article  Google Scholar 

  58. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Haussler D (2000) Proc Natl Acad Sci U S A 97:262

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by KAKENHI Grant No. 26220603 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masateru Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Taniguchi, M. (2016). Single-Molecule Sequencing. In: Kiguchi, M. (eds) Single-Molecule Electronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0724-8_9

Download citation

Publish with us

Policies and ethics