Skip to main content

Molecular Wires: An Overview of the Building Blocks of Molecular Electronics

  • Chapter
  • First Online:
Single-Molecule Electronics

Abstract

Molecular wires are the archetypal components in molecular electronics, performing the simple electronic function of conducting charge from one side of a circuit to the other. At the most basic level, a molecular wire is composed of a backbone through which the transmission of charge can take place, either via a coherent superexchange (tunneling) or incoherent charge-hopping mechanism and binding or anchoring groups to physically attach and electronically couple the wire to the rest of the circuit (typically metal electrodes). However, despite the simplicity of concept, the design of an efficient molecular wire, i.e., one able to conduct charge close to the ideal quantum of conductance G 0 and with extremely low attenuation with distance, in a uniform and reproducible fashion remains a topic of debate and intense investigation. In this chapter an empirical overview of the chemistry of molecular wires is presented, with emphasis on the chemical structures and influence on the electrical properties of the molecular junctions formed from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guldi DM, Nishihara H, Venkataraman L (2015) Molecular wires (editorial). Chem Soc Rev 44:842–844

    Article  CAS  Google Scholar 

  2. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew Chem Int Ed Engl 32:1111–1121

    Article  Google Scholar 

  3. Bixon M, Jortner J (1999) Electron transfer—from isolated molecules to biomolecules. In: Prigogine I, Rice SA (eds) Advances in chemical physics: electron transfer – from isolated molecules to biomolecules. Part 1, vol 106. Wiley, Hoboken

    Chapter  Google Scholar 

  4. McConnell HM (1961) Intramolecular charge transfer in aromatic free radicals. J Chem Phys 35:508–515

    Article  CAS  Google Scholar 

  5. Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle, Miller JR, Newton MD, Rolison DR, Sankey O, Schanze KS, Yardley J, Zhu XY (2003) Charge transfer on the nanoscale: current status. J Phys Chem B 107:6668–6697

    Article  CAS  Google Scholar 

  6. Gilbert M, Albinsson B (2015) Photoinduced charge and energy transfer in molecular wires. Chem Soc Rev 44:845–862

    Article  CAS  Google Scholar 

  7. Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105:2677–2679

    Article  CAS  Google Scholar 

  8. Nitzan A (2002) The relationship between electron transfer rate and molecular conduction 2: the sequential hopping case. Israel J Chem 42:163–166

    Article  CAS  Google Scholar 

  9. Berlin YA, Ratner MA (2005) Intra-molecular electron transfer and electric conductance via sequential hopping: unified theoretical description. Radiat Phys Chem 74:124–131

    Article  CAS  Google Scholar 

  10. Traub MC, Brunschwig BS, Lewis NS (2007) Relationships between the nonadiabatic bridged intramolecular, electrochemical and electrical electron-transfer processes. J Phys Chem B 111:6676–6683

    Article  CAS  Google Scholar 

  11. Wierzbinski E, Venkatramani R, Davis KL, Bezer S, Kong J, Zing Y, Borguet E, Achim C, Beratan DN, Waldeck DH (2013) The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. ACS Nano 7:5391–5401

    Article  CAS  Google Scholar 

  12. Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Chem 52:681–750

    Article  CAS  Google Scholar 

  13. Hong S, Reifenberger, Tian W, Datta S, Henderson J, Kubiak CP (2000) Molecular conductance spectroscopy of conjugated, phenyl-based molecules on Au(111): the effect of end groups on molecular conduction. Superlattice Microstruct 28:289–303

    Article  CAS  Google Scholar 

  14. Ke S-H, Baranger HU, Yang W (2004) Molecular conductance: chemical trends of anchoring groups. J Am Chem Soc 126:15897–15904

    Article  CAS  Google Scholar 

  15. Jia CC, Guo XF (2013) Molecule-electrode interfaces in molecular electronic devices. Chem Soc Rev 42:5642–5660

    Article  CAS  Google Scholar 

  16. Leary E, La Rosa A, Gonzalez MT, Rubio-Bollinger G, Agrait N, Martin N (2015) Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem Soc Rev 44:920–942

    Article  CAS  Google Scholar 

  17. Kaliginedi V, Rudnev AV, Moreno-Garcia P, Baghernejad M, Huang CC, Hong WJ, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539

    Article  CAS  Google Scholar 

  18. Haiss W, Martín S, Leary E, Zalinge HV, Higgins SJ, Bouffier L, Nichols RJ (2009) Impact of junction formation method and surface roughness on single molecule conductance. J Phys Chem C 113:5823–5833

    Article  CAS  Google Scholar 

  19. Chen F, Hihath J, Huang Z, Li X, Tao NJ (2007) Measurement of single molecule conductance. Annu Rev Phys Chem 58:535–564

    Article  CAS  Google Scholar 

  20. Mann B, Kuhn H (1971) Tunneling though fatty acid salt monolayers. J Appl Phys 42:4398–4405

    Article  CAS  Google Scholar 

  21. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (2003) Comparison of electronic transport measurements on organic molecules. Adv Mater 15:1881–1890

    Article  CAS  Google Scholar 

  22. Wold DJ, Frisbie CD (2000) Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J Am Chem Soc 122:2970–2971

    Article  CAS  Google Scholar 

  23. Wang Y-H, Hong Z-W, Sun Y-Y, Li D-F, Zheng J-F, Niu Z-J, Zhou X-S (2014) Tunneling decay constant of alkanedicarboxylic acids: different dependence on the metal electrodes between air and electrochemistry. J Phys Chem C 118:18756–18761

    Article  CAS  Google Scholar 

  24. Wang YH, Zhou XY, Sun YY, Han D, Zheng JF, Niu ZJ, Zhou XS (2014) Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochim Acta 123:205–210

    Article  CAS  Google Scholar 

  25. Peng ZL, Chen ZB, Zhou XY, Sun YY, Liang JH, Niu ZJ, Zhou XS, Mao BW (2012) Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes. J Phys Chem C 116:21699–21705

    Article  CAS  Google Scholar 

  26. Cui XD, Zarate X, Tomfor J, Sankey OF, Primak A, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2002) Making electrical contacts to molecular monolayers. Nanotechnology 13:5–14

    Article  CAS  Google Scholar 

  27. Beebe JM, Engelkes VB, Miller LL, Frisbie CD (2002) Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function. J Am Chem Soc 124:11268–11269

    Article  CAS  Google Scholar 

  28. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Nagahara LA, Lindsay SM (2002) Changes in the electronic properties of a molecule when it is wired into a circuit. J Phys Chem B 106:8609–8614

    Article  CAS  Google Scholar 

  29. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    Article  CAS  Google Scholar 

  30. Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM (2010) Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:3611–3619

    Article  CAS  Google Scholar 

  31. Martin S, Haiss W, Higgins S, Cea P, Lopez MC, Nichols RJ (2008) A comprehensive study of the single molecule conductance of α, ω-dicarboxylic acid-terminated alkanes. J Phys Chem C 112:3941–2948

    Article  CAS  Google Scholar 

  32. Haiss W, van Zalinge H, Bethell D, Ulstrup J, Schiffrin DJ, Nichols RJ (2006) Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss 131:253–264

    Article  CAS  Google Scholar 

  33. Jones DR, Troisi A (2007) Single molecule conductance of linear dithioalkanes in the liquid phase: apparently activated transport due to conformational flexibility. J Phys Chem C 111:14567

    Article  CAS  Google Scholar 

  34. Haran A, Waldeck DH, Naaman R, Moons E, Cahen D (1994) The dependence of electron transfer efficiency on the conformational order in organic monolayers. Science 263:948

    Article  CAS  Google Scholar 

  35. Fujihira M, Suzuki M, Fujii S, Nishikawa A (2006) Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys Chem Chem Phys 8:3876

    Article  CAS  Google Scholar 

  36. Guo S, Hihath J, Dıez-Perez I, Tao NJ (2011) Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy and tunneling barrier height. J Am Chem Soc 133:19189–19197

    Article  CAS  Google Scholar 

  37. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) Charge transport in single Au vertical bar alkanedithiol vertical bar Au junctions: coordination geometries and conformational degrees of freedom. J Am Chem Soc 130:318–326

    Article  CAS  Google Scholar 

  38. Bâldea I (2012) Interpretation of stochastic events in single-molecule measurements of conductance and transition voltage spectroscopy. J Am Chem Soc 134:7958–7962

    Article  CAS  Google Scholar 

  39. Kiguchi M, Kaneko S (2013) Single molecule bridging between metal electrodes. Phys Chem Chem Phys 15:2253–2267

    Article  CAS  Google Scholar 

  40. Paddon-Row MN (1994) Investigating long-range electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems. Acc Chem Res 27:18–25

    Article  CAS  Google Scholar 

  41. Darwish N, Paddon-Row MN, Gooding JJ (2014) Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc Chem Res 47:385–395

    Article  CAS  Google Scholar 

  42. Hihath J, Arroyo CR, Rubio-Bollinger G, Tao N, Agraït N (2008) Study of electron − phonon interactions in a single molecule covalently connected to two electrodes. Nano Lett 8:1673–1678

    Article  Google Scholar 

  43. Metzger RM (2015) Unimolecular electronics. Chem Rev 115:5056–5115

    Article  CAS  Google Scholar 

  44. Cheng Z-L, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L (2011) In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions. Nat Nanotechnol 6:353–357

    Article  CAS  Google Scholar 

  45. Kaletova E, Kohutova A, Hajduch J, Kaleta J, Basti Z, Pospisil L, Stibor I, Magnera TF, Michl J (2015) The scope of direct alkylation of gold surfaces with solutions of C1–C4 n-alkylstannanes. J Am Chem Soc 137:12086–12099

    Article  CAS  Google Scholar 

  46. Batra A, Kladnik G, Gorjizadeh N, Meisner J, Steigerwald M, Nuckolls C, Quek SY, Cvetko D, Morgante A, Venkataraman L (2014) Trimethyltin-mediated covalent gold-carbon bond formation. J Am Chem Soc 136:12556–12559

    Article  CAS  Google Scholar 

  47. Foti G, Vazquez H, Sanchez-Portal D, Arnau A, Frederiksen T (2014) Identifying highly conductive Au-C links through inelastic tunneling spectroscopy. J Phys Chem C 118:27106–27112

    Article  CAS  Google Scholar 

  48. Khobragade D, Stensrud ES, Mucha M, Smith JR, Pohl R, Stibor I, Michl J (2010) Preparation of covalent long-chain trialkylstannyl and trialkylsilyl salts and an examination of their adsorption on gold. Langmuir 26:8483–8490

    Article  CAS  Google Scholar 

  49. Chen W, Widawsky JR, Vazquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J Am Chem Soc 133:17160–17163

    Article  CAS  Google Scholar 

  50. Batra A, Darancet P, Chen Q, Meisner JS, Widawsky JR, Neaton JB, Nuckolls C, Venkataraman L (2013) Tuning rectification in single-molecular diodes. Nano Lett 13:6233–6237

    Article  CAS  Google Scholar 

  51. Stuyver T, Fias S, De Proft F, Geerlings P (2015) Back of an envelope selection rule for molecular transmission: a curly arrow approach. J Phys Chem C 119:26390–26400

    Article  CAS  Google Scholar 

  52. Tsuji Y, Movassagh R, Datta S, Hoffmann R (2015) Exponential attenuation of through-bond transmission in a polyene: theory and potential realizations. ACS Nano 9:11109–11120

    Article  CAS  Google Scholar 

  53. Arroyo CR, Frisenda R, Moth-Poulsen K, Seldenthuis JS, Bjornholm T, van der Zant HSJ (2013) Quantum interference effects at room temperature in OPV-based single molecule junctions. Nanoscale Res Lett 8:234

    Article  CAS  Google Scholar 

  54. Berritta M, Manrique DZ, Lambert CJ (2015) Interplay between quantum interference and conformational fluctuations in single-molecule break junctions. Nanoscale 7:1096–1101

    Article  CAS  Google Scholar 

  55. Meisner JS, Ahn S, Aradhya SV, Krikorian M, Parameswaran R, Steigerwald ML, Venkataraman L, Nuckolls C (2012) The importance of direct metal-π coupling in electronic transport through conjugated single-molecule junctions. J Am Chem Soc 134:20440–20445

    Article  CAS  Google Scholar 

  56. He J, Chen F, Li J, Sankey OF, Terazono Y, Herrero C, Gust D, Moore TA, Moore AL, Lindsay SM (2005) Electronic decay constant of carotenoid polyenes from single-molecule measurements. J Am Chem Soc 127:1384–1385

    Article  CAS  Google Scholar 

  57. Visoly-Fisher I, Daie K, Terazono Y, Herrero C, Fungo F, Otero L, Durantini E, Silber JJ, Sereno L, Gust D, Moore TA, Moore AL, Lindsay SM (2006) Conductance of a biomolecular wire. Proc Natl Acad Sci U S A 103:8686–8690

    Article  CAS  Google Scholar 

  58. Meisner JS, Kamenetska M, Krikorian M, Steigerwald ML, Venkataraman L, Nuckolls C (2011) A single molecule potentiometer. Nano Lett 11:1575–1579

    Article  CAS  Google Scholar 

  59. Tykwinski RR (2015) Carbyne: the molecular approach. Chem Rec 15:1060–1074

    Article  CAS  Google Scholar 

  60. Szafert S, Gladysz JA (2006) Update 1 of: carbon in one-dimension: structural analysis of the higher conjugated polyynes. Chem Rev 106:PR1–PR33

    Google Scholar 

  61. Garcia-Suarez VM, Lambert CJ (2008) Non-trivial length dependence of the conductance and negative differential resistance in atomic molecular wires. Nanotechnology 19:455203

    Article  CAS  Google Scholar 

  62. Crljen Z, Baranovic G (2007) Unusual conductance of polyyne-based molecular wires. Phys Rev Lett 98:116801

    Article  CAS  Google Scholar 

  63. Wang C, Batsanov AS, Bryce MR, Martin S, Nichols RJ, Higgins SJ, Garcia-Suarez VM, Lambert CJ (2009) Oligoyne single molecule wires. J Am Chem Soc 131:15647–15654

    Article  CAS  Google Scholar 

  64. Moreno-Garcia P, Gulcur M, Manrique DZ, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov AS, Bryce MR, Lambert C, Wandlowski T (2013) Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. J Am Chem Soc 135:12228–12240

    Article  CAS  Google Scholar 

  65. Gulcur M, Moreno-Garcia P, Zhao X, Baghernejad M, Basanov AS, Hong WJ, Bryce MR, Wandlowski T (2014) The synthesis of functionalized diaryltetraynes and their transport properties in single-molecule junctions. Chem Eur J 20:4653–4660

    Article  CAS  Google Scholar 

  66. Milan DC, Al-Owaedi O, Oerthel MC, Marques-Gonzalez S, Brooke RJ, Bryce MR, Cea P, Ferrer J, Higgings SJ, Lambert CJ, Low PJ, Manrique DZ, Martin S, Nichols RJ, Schwazacher W, Garcia-Suarez VM (2016) Solvent dependence of the single molecule conductance of oligoyne-based molecular wires. J Phys Chem C. doi:10.1021.acs.jpcc.5b08877

    Google Scholar 

  67. Li XL, He J, Hihath J, Xu BQ, Lindsay SM, Tao NJ (2006) Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. J Am Chem Soc 128:2135–2141

    Article  CAS  Google Scholar 

  68. Leary E, Hobenreich H, Higgins SJ, Van Zalinge H, Haiss W, Nichols RJ, Finch CM, Grace I, Lambert CJ, Mcgrath R, Smerdon J (2009) Single-molecule solvation-shell sensing. Phys Rev Lett 102:086801

    Article  CAS  Google Scholar 

  69. Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) Thermally activated electron transport in single redox molecules. J Am Chem Soc 129:11535–11542

    Article  CAS  Google Scholar 

  70. Cao H, Jiang J, Ma J, Luo Y (2008) Temperature-dependent statistical behavior of single molecular conductance in aqueous solution. J Am Chem Soc 130:6674–6675

    Article  CAS  Google Scholar 

  71. Fatemi V, Kamenetska M, Neaton JB, Venkataraman L (2011) Environmental control of single-molecule junction transport. Nano Lett 11:1988–1992

    Article  CAS  Google Scholar 

  72. Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewski MR (2004) Making a molecular wire: charge and spin transport through para-phenylene oligomers. J Am Chem Soc 126:5577–5584

    Article  CAS  Google Scholar 

  73. Benniston AC, Harriman A (2006) Charge on the move: how electron-transfer dynamics depend on molecular conformation. Chem Soc Rev 35:169–179

    Article  CAS  Google Scholar 

  74. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–907

    Article  CAS  Google Scholar 

  75. Mishchenko A, Vonlanthen D, Meded V, Burkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers D, Mayor M, Wandlowski T (2010) Influence of conformation on conductance of biphenyl-dithiol single molecule contacts. Nano Lett 10:156–163

    Article  CAS  Google Scholar 

  76. Finch CM, Sirichantaropass S, Bailey SW, Grace IM, Garcia-Suarez VM, Lambert CJ (2008) Conformation dependence of molecular conductance: chemistry versus geometry. J Phys Condens Matter 20:022203

    Article  CAS  Google Scholar 

  77. Parthey M, Gluyas JBG, Fox MA, Low PJ, Kaupp M (2014) Mixed-valence ruthenium complexes rotating through a conformational Robin-Day continuum. Chem Eur J 20:6895–6908

    Article  CAS  Google Scholar 

  78. Michoff MEZ, Castillo ME, Leiva EPM (2013) A reversible molecular switch based on the biphenyl structure. J Phys Chem C 117:25724–25732

    Article  CAS  Google Scholar 

  79. Capozzi B, Dell EJ, Berkelbach TC, Reichmann DR, Venkataraman L, Campos LM (2014) Length-dependent conductance of oligothiophenes. J Am Chem Soc 136:10486–10492

    Article  CAS  Google Scholar 

  80. Xu BQ, Li XL, Xiao XY, Sakaguchi H, Tao NJ (2005) Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett 5:1491–1495

    Article  CAS  Google Scholar 

  81. Xie ZT, Baldea I, Smith CE, Wu YF, Frisbie CD (2015) Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 9:8022–8036

    Article  CAS  Google Scholar 

  82. Ranfanathan S, Steidel I, Anariba F, McCreery RL (2001) Covalently bonded organic monolayers on a carbon substrate: a new paradigm for molecular electronics. Nano Lett 1:491–494

    Article  CAS  Google Scholar 

  83. Hines T, Diez-Perez I, Nakamura H, Shimazaki T, Asai Y, Tao NJ (2013) Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J Am Chem Soc 135:3319–3322

    Article  CAS  Google Scholar 

  84. Ramos-Berdullas N, Mandado M (2013) Electronic properties of p-xylylene and p-phenylene chains subjected to finite bias voltages: a new highly conducting oligophenyl structure. Chem Eur J 19:3646–3654

    Google Scholar 

  85. de Cola L (2005) Molecular wires: from design to properties. Top Curr Chem, vol 257. In: de Cola L (ed). Springer, Berlin/Heidelberg

    Google Scholar 

  86. Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Molecular-wire behavior in p-phenylenevinylene oligomers. Nature 396:60–63

    Article  CAS  Google Scholar 

  87. Bock CW, Trachtman M, George P (1985) A molecular orbital study of the rotation about the C = C bond in styrene. Chem Phys 93:431–443

    Article  CAS  Google Scholar 

  88. Davis WB, Ratner MA, Wasielewski MR (2001) Conformational gating of long distance electron transfer through wire-like bridges in donor-bridge-acceptor molecules. J Am Chem Soc 123:7877–7886

    Article  CAS  Google Scholar 

  89. Nishizawa S, Hasegawa J-Y, Matsuda K (2013) Theoretical investigation of the β value of the π-conjugated molecular wires by evaluating exchange interaction between organic radicals. J Phys Chem C 117:26280–26282

    Article  CAS  Google Scholar 

  90. Giacalone F, Segura JL, Martin N, Guldi DM (2004) Exceptionally small attenuation factors in molecular wires. J Am Chem Soc 126:5340–5341

    Article  CAS  Google Scholar 

  91. Sukegawa J, Schubert C, Zhu XZ, Tsuji H, Guildi DM, Nakamura E (2014) Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling. Nat Chem 6:899–905

    Article  CAS  Google Scholar 

  92. Schubert C, Margraf JT, Clark T, Guildi DM (2015) Molecular wires-impact of π-conjugation and implementation of molecular bottlenecks. Chem Soc Rev 44:988–998

    Article  CAS  Google Scholar 

  93. Greaves SJ, Flynn EL, Futcher EL, Wrede E, Lydon DP, Low PJ, Rutter SR, Beeby A (2006) Cavity ring-down spectroscopy of the torsional motions of 1,4-bis(phenylethynyl)benzene. J Phys Chem A 110:2114–2121

    Article  CAS  Google Scholar 

  94. Diderich F (2005) Acetylene chemistry: chemistry, biology and material science. In: Diderich F, Stang PJ, Tykwinski RR (eds). Wiley-VCH, Weinheim

    Google Scholar 

  95. Tour JM (2003) Molecular electronics; commercial insights, chemistry, devices, architecture and programming. World Scientific Publishing Co. Pte. Ltd., Singapore/River Edge/London

    Google Scholar 

  96. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW Jr, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Conductance switching in single molecules through conformational changes. Science 292:2303–2307

    Article  CAS  Google Scholar 

  97. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552

    Article  CAS  Google Scholar 

  98. Moore AM, Dameron AA, Mantooth BA, Smith RK, Fuchs DJ, Ciszek JW, Maya F, Yao Y, Tour JM, Weiss PS (2006) Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching. J Am Chem Soc 18:1959–1967

    Article  CAS  Google Scholar 

  99. James DK, Tour JM (2004) Electrical measurements in molecular electronics. Chem Mater 16:4423–4435

    Article  CAS  Google Scholar 

  100. Xiao XY, Nagahara LA, Rawlett A, Tao NJ (2005) Electrochemical gate-controlled conductance of single oligo-(phenylene ethynylene)s. J Am Chem Soc 127:9235–9240

    Article  CAS  Google Scholar 

  101. Kushmerick JG, Whitaker CM, Pollack SK, Schull TL, Shashidhar R (2004) Tuning current rectification across molecular junctions. Nanotechnology 15:S489–S493

    Article  CAS  Google Scholar 

  102. Zotti LA, Kirchner T, Cuevas JC, Pauly F, Huhn T, Scheer E, Erbe A (2010) Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6:1529–1535

    Article  CAS  Google Scholar 

  103. Hong WJ, Manrique DZ, Moreno-Garcia P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T (2012) Single molecule conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchor group. J Am Chem Soc 134:2292–2304

    Article  CAS  Google Scholar 

  104. Pera G, Martin S, Ballesteros LM, Hope AJ, Low PJ, Nichols RJ, Cea P (2010) Metal-molecule-metal junctions in Langmuir-Blodgett films using a new linker: Trimethylsilane. Chem Eur J 16:13398–13405

    Article  CAS  Google Scholar 

  105. Marques-Gonzalez S, Yufit DS, Howard JAK, Martin S, Osorio HM, Garcia-Suarez VM, Nichols RJ, Higgins SJ, Cea P, Low PJ (2013) Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact. Dalton Trans 42:338–341

    Article  CAS  Google Scholar 

  106. Hong WJ, Li H, Liu S-X, Fu YC, Li JF, Kalinginedi V, Decurtins S, Wandlowski T (2012) Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au-C s-bonds. J Am Chem Soc 134:19425–19431

    Article  CAS  Google Scholar 

  107. Kaliginedi V, Moreno-Garcia P, Valkenier H, Hong W, Garcia-Suarez VM, Buiter P, Otten JLH, Hummelen JC, Lambert CJ, Wandlowski T (2012) Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J Am Chem Soc 134:5262–5275

    Article  CAS  Google Scholar 

  108. Cho AH, Risko C, Delgado MCR, Kim BS, Bredas JL, Frisbie CD (2010) Transition from tunneling to hopping transport in long, conjugated olio-imine wires connected to metals. J Am Chem Soc 132:4358–4368

    Article  CAS  Google Scholar 

  109. Linton KE, Fox MA, Palsson LO, Bruce MR (2015) Oligo(p-phenyleneethynylene) (OPE) molecular wires: synthesis and length dependence of photoinduced charge transfer in OPEs with triarylamine and diaryloxadiazole end groups. Chem Eur J 21:3997–4007

    Article  CAS  Google Scholar 

  110. Lu Q, Liu K, Zhang HM, Du Z, Wang XH, Wang FS (2009) From tunneling to hopping: a comprehensive investigation of charge transport mechanisms in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3:3861–3868

    Article  CAS  Google Scholar 

  111. Zhao X, Huang CC, Gulcur M, Batsanov AS, Baghernejad M, Hong WJ, Bryce MR, Wandlowski T (2013) Oligo(aryleneethynylene)s with terminal pyridyl groups: Synthesis and length dependence of the tunneling-to-hopping transition of single-molecule conductances. Chem Mater 25:4340–4347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. J. L. gratefully acknowledges financial support from the ARC and the award of a Future Fellowship. S. M. G. gratefully acknowledges an International Research Fellowship from the Japan Society for the Promotion of Science. We thank our colleagues and coworkers for their ongoing collaborations and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Low, P.J., Marqués-González, S. (2016). Molecular Wires: An Overview of the Building Blocks of Molecular Electronics. In: Kiguchi, M. (eds) Single-Molecule Electronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0724-8_4

Download citation

Publish with us

Policies and ethics