Skip to main content

Characterization of the Single Molecular Junction

  • Chapter
  • First Online:
Single-Molecule Electronics

Abstract

The single molecular junction is becoming an increasingly attractive research target owing to the structural tunability, flexibility, low cost, and compatibility with electronics. From a scientific point of view, the single molecular junction gives us platform to access and investigate physical phenomena appearing at the low-dimensional nano-junction on a single molecular scale. In this chapter, we focus on the recent research progress in the characterization of the single molecular junction. One of the main issues in the single molecular junction studies is structural uncertainty in the junction. This is because there is no straightforward way to visualize and identify ultrasmall structure of a molecule trapped in nanogap electrodes. To overcome this issue and to reliably measure physical properties of the single molecular junction, researchers have developed a variety of characterization techniques. We start by introducing structure-related characterizations and analyses of plateau length, point-contact spectroscopy, inelastic electron tunneling spectroscopy, action spectroscopy, and surface-enhanced Raman spectroscopy. Then, electronic characterizations and analyses of current–voltage characteristics, thermopower measurement, and shot noise measurement are presented. Finally, we touch on force measurement, whose development is still in progress, but it provides understanding of the structure–conductance relationship in a single molecular junction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific Publishing Co. Pte. Ltd, Singapore

    Book  Google Scholar 

  2. Kiguchi M, Kaneko S (2013) Phys Chem Chem Phys 15:2253

    Article  CAS  Google Scholar 

  3. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Nature 462:7276

    Article  Google Scholar 

  4. Diez-Perez I, Hihath J, Lee LY, Yu, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Nat Chem 1:635

    Article  CAS  Google Scholar 

  5. Kiguchi M, Ohto T, Fujii S, Sugiyasu K, Nakajima S, Takeuchi M, Nakamura H (2014) J Am Chem Soc 136:7327

    Article  CAS  Google Scholar 

  6. Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C (2015) Nat Chem 7:215

    Article  CAS  Google Scholar 

  7. Fujii S, Tada T, Komoto Y, Osuga T, Murase T, Fujita M, Kiguchi M (2015) J Am Chem Soc 137:5939

    Article  CAS  Google Scholar 

  8. Naidyuk Y, Yanson I (2005) Point-contact spectroscopy. Springer, New York

    Book  Google Scholar 

  9. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Nano Lett 8:919

    Article  CAS  Google Scholar 

  10. Djukic D, van Ruitenbeek JM (2006) Nano Lett 6:789

    Article  CAS  Google Scholar 

  11. Ho Choi S, Kim B, Frisbie CD (2008) Science 320:1482

    Article  Google Scholar 

  12. Reddy P, Jang SY, Segalman RA, Majumdar A (2007) Science 315:1568

    Article  CAS  Google Scholar 

  13. Xu B, Xiao X, Tao NJ (2003) J Am Chem Soc 125:16164

    Article  CAS  Google Scholar 

  14. Untiedt C, Yanson AI, Grande R, Rubio-Bollinger G, Agrait N, Vieira S, van Ruitenbeek JM (2002) Phys Rev B 66:085418

    Article  Google Scholar 

  15. Kiguchi M, Djukic D, van Ruitenbeek JM (2007) Nanotechnology 18:035205

    Article  CAS  Google Scholar 

  16. Smit RH, Untiedt C, Yanson AI, van Ruitenbeek JM (2001) Phys Rev Lett 87:266102

    Article  CAS  Google Scholar 

  17. Kiguchi M, Hashimoto K, Ono Y, Taketsugu T, Murakoshi K (2010) Phys Rev B 81:195401

    Article  Google Scholar 

  18. Thijssen WHA, Strange M, aan de Brugh JMJ, van Ruitenbeek JM (2008) New J Phys 10:033005

    Article  Google Scholar 

  19. Perrin ML, Prins F, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, Briza T, Kaplanek R, Kral V, van Ruitenbeek JM, van der Zant HS, Dulic D (2014) Angew Chem Int Ed 50:11223

    Article  Google Scholar 

  20. Klausen RS, Widawsky JR, Steigerwald ML, Venkataraman L, Nuckolls C (2012) J Am Chem Soc 134:4541

    Article  CAS  Google Scholar 

  21. Kiguchi M, Takahashi T, Takahashi Y, Yamauchi Y, Murase T, Fujita M, Tada T, Watanabe S (2011) Angew Chem Int Ed 50:5708

    Article  CAS  Google Scholar 

  22. Jaklevic RC (1966) J Lambe: Phys Rev Lett 17:1139

    CAS  Google Scholar 

  23. Stipe BC, Rezaei MA, Ho W (1998) Science 280:1732

    Article  CAS  Google Scholar 

  24. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Nature 419:906

    Article  CAS  Google Scholar 

  25. Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E (2011) Nano Lett 11:3734

    Article  CAS  Google Scholar 

  26. Tsutsui M, Taniguchi M, Shoji K, Yokota K, Kawai T (2009) Nanoscale 1:164

    Article  CAS  Google Scholar 

  27. Kiguchi M, Tal O, Wohlthat S, Pauly F, Krieger M, Djukic D, Cuevas JC, van Ruitenbeek JM (2008) Phys Rev Lett 101:046801

    Article  CAS  Google Scholar 

  28. Hihath J, Arroyo CR, Rubio-Bollinger G, Tao N, Agraït N (2008) Nano Lett 8:1673

    Article  Google Scholar 

  29. Taniguchi M, Tsutsui M, Yokota K, Kawai T (2009) Nanotechnology 20:434008

    Article  Google Scholar 

  30. Pong D, Lazorcik J, Mantooth BA, Hoore M, Ratner MA, Troisi A, Yao Y, Ciszek JW, Tour JM, Shashidhar R (2006) Nat Mater 5:11

    Article  Google Scholar 

  31. Tal O, Krieger M, Leerink B, van Ruitenbeek JM (2008) Phys Rev Let 100:196804

    Article  CAS  Google Scholar 

  32. Kiguchi M, Murakoshi K (2008) J Phys Chem C 112:8140

    Article  CAS  Google Scholar 

  33. Nakazumi T, Kaneko S, Matsushita R, Kiguchi M (2012) J Phys Chem C 116:18250

    Article  CAS  Google Scholar 

  34. Kaneko S, Nakazumi T, Kiguchi M (2010) J Phys Chem Lett 1:3520

    Article  CAS  Google Scholar 

  35. Thijssen WH, Djukic D, Otte AF, Bremmer RH, van Ruitenbeek JM (2006) Phys Rev Lett 97:226806

    Article  CAS  Google Scholar 

  36. Kiguchi M, Nakazumi T, Hashimoto K, Murakoshi K (2010) Phys Rev B 81:45420

    Article  Google Scholar 

  37. Nakazumi T, Kaneko S, Kiguchi M (2014) J Phys Chem C 118:7489

    Article  CAS  Google Scholar 

  38. Tian J-H, Liu B, Xiulan, Yang Z-L, Ren B, Wu S-T, Nongjian, Tian Z-Q (2006) J Am Chem Soc 128:14748

    Article  CAS  Google Scholar 

  39. Ward DR, Corley DA, Tour JM, Natelson D (2011) Nat Nanotechnol 6:33

    Article  CAS  Google Scholar 

  40. Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O, Selzer Y (2008) Nat Nanotechnol 12:727

    Article  Google Scholar 

  41. Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K (2013) J Am Chem Soc 135:1009

    Article  CAS  Google Scholar 

  42. Liu Z, Ding SY, Chen ZB, Wang X, Tian JH, Anema JR, Zhou XS, Wu DY, Mao BW, Xu X, Ren B, Tian ZQ (2011) Nat Commun 2:305

    Article  Google Scholar 

  43. Kaneko S, Murai D, Marqués-González S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K, Kiguchi M (2016) J Am Chem Soc 138:1294

    Google Scholar 

  44. Ikeda K, Sato J, Fujimoto N, Hayazawa N, Kawata S, Uosaki K (2009) J Phys Chem C 113:11816

    Article  CAS  Google Scholar 

  45. Guo S, Hihath J, Diez-Perez I, Tao N (2011) J Am Chem Soc 133:19189

    Article  CAS  Google Scholar 

  46. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Phys Rev Lett 97:026801

    Article  Google Scholar 

  47. Lee SK, Ohto T, Yamada R, Tada H (2014) Nano Lett 14:5276

    Article  CAS  Google Scholar 

  48. Aradhya SV, Frei M, Hybertsen MS, Venkataraman L (2012) Nat Mater 11:872

    Article  CAS  Google Scholar 

  49. Yoshida K, Pobelov IV, Manrique DZ, Pope T, Meszaros G, Gulcur M, Bryce MR, Lambert CJ, Wandlowski T (2015) Sci Rep 5:9002

    Article  CAS  Google Scholar 

  50. Parks JJ, Champagne AR, Costi TA, Shum WW, Pasupathy AN, Neuscamman E, Flores-Torres S, Cornaglia PS, Aligia AA, Balseiro CA, Chan GK, Abruna HD, Ralph DC (2010) Science 328:1370

    Article  CAS  Google Scholar 

  51. Loth S, Etzkorn M, Lutz CP, Eigler DM, Heinrich AJ (2010) Science 329:1628

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kiguchi, M., Fujii, S. (2016). Characterization of the Single Molecular Junction. In: Kiguchi, M. (eds) Single-Molecule Electronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0724-8_3

Download citation

Publish with us

Policies and ethics