Skip to main content

Effects of Fever-Range Hyperthermia on T Cell-Mediated Immunity: Possible Combination of Hyperthermia and T Cell-Based Cancer Immunotherapy

  • Chapter
  • First Online:
  • 753 Accesses

Abstract

Elevated body temperature has been thought to play an important role in the regulation of immune responses, and accumulating evidence in thermal medicine indicates that hyperthermia could be a useful combination therapy to enhance the efficacy of cancer immunotherapy. However, the intrinsic effects of elevated body temperature on the immune system are poorly understood, particularly in humans. Future clinical studies are expected to elucidate the practical utility of hyperthermia, and in particular fever-range whole-body hyperthermia in combination with T-cell and/or DC-based cancer immune cell therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang HG, Mehta K, Cohen P, Guha C. Hyperthermia on immune regulation: a temperature’s story. Cancer Lett. 2008;271:191–204.

    Article  CAS  PubMed  Google Scholar 

  2. Mackowiak PA. Concepts of fever. Arch Intern Med. 1998;158:1870–81.

    Article  CAS  PubMed  Google Scholar 

  3. Baronzio GF, Della Seta R, D’Amico M, Baronzio A, Freitas I, Forzenigo G, et al. Effects of local and whole body hyperthermia on immunity. In: Baronzio GF, Hager ED, editors. Gerorgetown: Landes BioScience; 2006, p. 247–75.

    Google Scholar 

  4. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  5. Ostberg JR, Kabingu E, Repasky EA. Thermal regulation of dendritic cell activation and migration from skin explants. Int J Hyperthermia. 2003;19:520–33.

    Article  CAS  PubMed  Google Scholar 

  6. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96.

    Article  CAS  PubMed  Google Scholar 

  7. Wang WC, Goldman LM, Schleider DM, Appenheimer MM, Subjeck JR, Repasky EA, et al. Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J Immunol. 1998;160:961–9.

    CAS  PubMed  Google Scholar 

  8. Evans SS, Wang WC, Bain MD, Burd R, Ostberg JR, Repasky EA. Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood. 2001;97:2727–33.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Q, Fisher DT, Clancy KA, Gauguet JM, Wang WC, Unger E, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7:1299–308.

    Article  CAS  PubMed  Google Scholar 

  10. Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, et al. Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol. 2011;90:951–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ostberg JR, Gellin C, Patel R, Repasky EA. Regulatory potential of fever-range whole body hyperthermia on langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J Immunol. 2001;167:2666–70.

    Article  CAS  PubMed  Google Scholar 

  12. Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 2011;121:3846–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia. 2012;28:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kappel M, Stadeager C, Tvede N, Galbo H, Klarlund PB. Effects of in vitro hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol. 1991;84:175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kraybill WG, Olenki T, Evans SS, Ostberg JR, O’Leary KA, Gibbs JF, et al. A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int J Hyperthermia. 2002;18:253–66.

    Article  CAS  PubMed  Google Scholar 

  16. Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S. 41.8 °C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother. 2002;51:603–13.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi Y, Ito Y, Ostapenko VV, Sakai M, Matsushita N, Imai K, et al. Fever-range whole-body heat treatment stimulates antigen-specific T-cell responses in humans. Immunol Lett. 2014;162:256–61.

    Article  CAS  PubMed  Google Scholar 

  18. Ostberg JR, Kaplan KC, Repasky EA. Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. Int J Hyperthermia. 2002;18:552–62.

    Article  CAS  PubMed  Google Scholar 

  19. Tsan MF, Gao B. Heat shock protein and immune system. J Leukoc Biol. 2009;85:905–10.

    Article  CAS  PubMed  Google Scholar 

  20. Breloer M, Dorner B, Moré SM, Roderian T, Fleischer B, von Bonin A. Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-γ production in T cells. Eur J Immunol. 2001;31:2051–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Gao B, Tsan MF. Induction of cytokines by heat shock proteins and concanavalin a in murine splenocytes. Cytokine. 2005;32:149–54.

    Article  PubMed  Google Scholar 

  22. Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63:60–72.

    Article  CAS  PubMed  Google Scholar 

  23. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2002;52:595–638.

    Google Scholar 

  24. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24:444–8.

    Article  CAS  PubMed  Google Scholar 

  25. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci U S A. 1999;96:109–64.

    Article  Google Scholar 

  26. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58:193–210.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberg SA, Restifo NP, Young JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fedorov VD, Sadelain M, Kloss CC. Novel approaches to enhance the specificity and safety of engineered T cells. Cancer J. 2014;20:160–5.

    Article  CAS  PubMed  Google Scholar 

  29. Takayama T, Skine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomized trial. Lancet. 2000;356:802–7.

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K, Yamamoto M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2012;19:171–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keishi Tanigawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tanigawa, K., Ito, Y., Kobayashi, Y. (2016). Effects of Fever-Range Hyperthermia on T Cell-Mediated Immunity: Possible Combination of Hyperthermia and T Cell-Based Cancer Immunotherapy. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics