Skip to main content

Magnetic Nanoparticle-Mediated Hyperthermia and Induction of Anti-Tumor Immune Responses

  • Chapter
  • First Online:

Abstract

Magnetic nanoparticle-mediated hyperthermia (MNHT) can heat tumor tissue to the desired temperature without damaging surrounding normal tissue. The MNHT system consists of targeting tumor with functional magnetic nanoparticles (MNPs) and then applying an external alternating magnetic field (AMF) to generate heat in the MNPs. Temperature in the tumor tissue is increased to above 43 °C, which causes necrosis of cancer cells but does not damage surrounding normal tissue. Among available MNPs, magnetite has been extensively studied. Recent years have seen remarkable advances in MNHT; both functional MNPs and AMF generators have been developed. By applying MNHT, heat shock proteins (HSPs) are highly expressed within and around tumor tissue, which causes intriguing biological responses such as tumor-specific immune response. These results suggest that MNHT is able to kill not only tumors exposed to heat treatment, but also unheated metastatic tumors at distant sites. Currently, some researchers have started clinical trials, suggesting that the time has come for clinical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dewhirst MW, Prosnitz L, Thrall D, Prescott D, Clegg S, Charles C, et al. Hyperthermic treatment of malignant diseases: current status and a view toward the future. Semin Oncol. 1997;24(6):616–25.

    CAS  PubMed  Google Scholar 

  2. van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13(8):1173–84.

    Article  PubMed  Google Scholar 

  3. Bauer KD, Henle KJ. Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiat Res. 1979;78(2):251–63.

    Article  CAS  PubMed  Google Scholar 

  4. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11. doi:10.1263/jbb.100.1.

    Article  CAS  PubMed  Google Scholar 

  5. Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia. 1993;9(1):51–68.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6(11):1342–7. doi:10.1002/biot.201100045.

    Article  CAS  PubMed  Google Scholar 

  7. Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002;18(4):267–84. doi:10.1080/02656730110108785.

    Article  CAS  PubMed  Google Scholar 

  8. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res. 1998;89(7):775–82.

    Article  CAS  PubMed  Google Scholar 

  9. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. doi:10.1056/NEJMoa1112824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29(8):715–29. doi:10.3109/02656736.2013.836758.

    Article  PubMed  Google Scholar 

  11. Hergt R, Dutz S, Roder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter. 2008;20(38):385214. doi:10.1088/0953-8984/20/38/385214.

    Article  PubMed  Google Scholar 

  12. Gazeau F, Levy M, Wilhelm C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine (Lond). 2008;3(6):831–44. doi:10.2217/17435889.3.6.831.

    Article  CAS  Google Scholar 

  13. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–74. doi:10.1080/02656730802104757.

    Article  CAS  PubMed  Google Scholar 

  14. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 2012;5(2):173–86. doi:10.1586/ecp.12.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon RT, Hines JR, Gordon D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses. 1979;5(1):83–102.

    Article  CAS  PubMed  Google Scholar 

  17. Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res. 1996;87(11):1179–83.

    Article  CAS  PubMed  Google Scholar 

  18. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res. 1998;89(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ito A, Kobayashi T. Intracellular hyperthermia using magnetic nanoparticles: A novel method for hyperthermia clinical applications. Thermal Med. 2008;24:113–29.

    Article  Google Scholar 

  20. Kobayashi T. Cancer hyperthermia using nanomagnetic particles and induction of immune responses. In: Torchilin V, editor. Handbook of nanobiomedical research: fundamentals, applications and recent developments, Frontiers in nanobiomedical research, vol. 3. Singapore: World Scientific Publishing Company; 2014. p. 465–99. ISSN of vol 3 is 2251–3965 and ISBN is 978-9814520690

    Google Scholar 

  21. Cheraghipour E, Javadpour S. Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy. Int J Hyperthermia. 2013;29(6):511–9. doi:10.3109/02656736.2013.803605.

    Article  CAS  PubMed  Google Scholar 

  22. Jimbow K, Tamura Y, Yoneta A, Kamiya T, Ono I, Yamashita T, et al. Conjugation of magnetite nanoparticles with melanogenesis substrate, NPrCAP provides melanoma targeted, in situ peptide vaccine immunotherapy through HSP production by chemo-thermotherapy. J Biomat Nanobiot. 2012;3(2):140–53.

    Article  CAS  Google Scholar 

  23. Sato M, Yamashita T, Ohkura M, Osai Y, Sato A, Takada T, et al. N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) is a nanoparticle for the targeted growth suppression of melanoma cells. J Invest Dermatol. 2009;129(9):2233–41. doi:10.1038/jid.2009.39.

    Article  CAS  PubMed  Google Scholar 

  24. Ikehara Y, Niwa T, Biao L, Ikehara SK, Ohashi N, Kobayashi T, et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 2006;66(17):8740–8. doi:10.1158/0008-5472.CAN-06-0470.

    Article  CAS  PubMed  Google Scholar 

  25. DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, et al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF – induced thermoablative therapy for human breast cancer in mice. J Nucl Med. 2007;48(3):437–44.

    CAS  PubMed  Google Scholar 

  26. Shinkai M, Le B, Honda H, Yoshikawa K, Shimizu K, Saga S, et al. Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J Cancer Res. 2001;92(10):1138–45.

    Article  CAS  PubMed  Google Scholar 

  27. Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat. 2009;113(3):435–41. doi:10.1007/s10549-008-9948-x.

    Article  CAS  PubMed  Google Scholar 

  28. Pala K, Serwotka A, Jelen F, Jakimowicz P, Otlewski J. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomedicine. 2014;9:67–76. doi:10.2147/IJN.S52539.

    PubMed  Google Scholar 

  29. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70(15):6303–12. doi:10.1158/0008-5472.CAN-10-1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang HW, Hua MY, Liu HL, Huang CY, Wei KC. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl. 2012;5:73–86. doi:10.2147/NSA.S35506.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia. 2006;22(3):205–13. doi:10.1080/02656730600582956.

    Article  CAS  PubMed  Google Scholar 

  32. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202(4374):1290–3.

    Article  CAS  PubMed  Google Scholar 

  33. Ohno T, Wakabayashi T, Takemura A, Yoshida J, Ito A, Shinkai M, et al. Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study. J Neurooncol. 2002;56(3):233–9.

    Article  PubMed  Google Scholar 

  34. Shinkai M, Ueno K, Honda H, Kobayashi T. Magnetite needle as heating mediator for intracellular hyperthermia of tumor. Jpn J Hyperther Oncol. 2002;18:191–8.

    Google Scholar 

  35. Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother. 2003;52(2):80–8. doi:10.1007/s00262-002-0335-x.

    CAS  PubMed  Google Scholar 

  36. Gneveckow U, Jordan A, Scholz R, Bruss V, Waldofner N, Ricke J, et al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300 F for clinical magnetic fluid hyperthermia. Med Phys. 2004;31(6):1444–51.

    Article  PubMed  Google Scholar 

  37. Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Nagata Y, Nishimura Y, et al. Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepatogastroenterology. 1996;43(12):1431–7.

    CAS  PubMed  Google Scholar 

  38. Wada S, Tazawa K, Furuta I, Nagae H. Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Dis. 2003;9(4):218–23.

    Article  CAS  PubMed  Google Scholar 

  39. Kawai N, Ito A, Nakahara Y, Honda H, Kobayashi T, Futakuchi M, et al. Complete regression of experimental prostate cancer in nude mice by repeated hyperthermia using magnetite cationic liposomes and a newly developed solenoid containing a ferrite core. Prostate. 2006;66(7):718–27. doi:10.1002/pros.20394.

    Article  CAS  PubMed  Google Scholar 

  40. Terunuma H. Enhancement of hyperthermia on immune systems. In: Ohnishi T, Yoshikawa T, Kokura S, editors. Hyperthermic Oncology from Bench to Bed. London: Springer; 2016.

    Google Scholar 

  41. Frey B, Weiss EM, Rubner Y, Wunderlich R, Ott OJ, Sauer R, et al. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 2012;28(6):528–42. doi:10.3109/02656736.2012.677933.

    Article  CAS  PubMed  Google Scholar 

  42. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–91. doi:10.1146/annurev.bi.55.070186.005443.

    Article  CAS  PubMed  Google Scholar 

  43. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol. 2000;20(19):7146–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subjeck JR, Sciandra JJ, Johnson RJ. Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol. 1982;55(656):579–84. doi:10.1259/0007-1285-55-656-579.

    Article  CAS  PubMed  Google Scholar 

  45. Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003;96(4):364–9. doi:10.1016/S1389-1723(03)90138-1.

    Article  CAS  PubMed  Google Scholar 

  46. Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother. 2006;55(3):320–8. doi:10.1007/s00262-005-0049-y.

    Article  CAS  PubMed  Google Scholar 

  47. Ito A, Kobayashi T, Honda H. A mechanism of anti-tumor immunity induced by hyperthermia. Jpn J Hyperther Oncol. 2005;21:1–19.

    Google Scholar 

  48. Kobayashi T, Kakimi K, Nakayama E, Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine (Lond). 2014;9(11):1715–26. doi:10.2217/nnm.14.106.

    Article  CAS  Google Scholar 

  49. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–42. doi:10.1038/74697.

    Article  CAS  PubMed  Google Scholar 

  50. Vanaja DK, Grossmann ME, Celis E, Young CY. Tumor prevention and antitumor immunity with heat shock protein 70 induced by 15-deoxy-delta12,14-prostaglandin J2 in transgenic adenocarcinoma of mouse prostate cells. Cancer Res. 2000;60(17):4714–8.

    CAS  PubMed  Google Scholar 

  51. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2(3):185–94. doi:10.1038/nri749.

    Article  CAS  PubMed  Google Scholar 

  52. Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  53. Binder RJ. CD40-independent engagement of mammalian hsp70 by antigen-presenting cells. J Immunol. 2009;182(11):6844–50. doi:10.4049/jimmunol.0900026.

    Article  CAS  PubMed  Google Scholar 

  54. Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 2003;94(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, et al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Biosci Bioeng. 2005;100(1):112–5. doi:10.1263/jbb.100.112.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer. 2005;116(4):624–33. doi:10.1002/ijc.21061.

    Article  CAS  PubMed  Google Scholar 

  57. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96. doi:10.1146/annurev.iy.09.040191.001415.

    Article  CAS  PubMed  Google Scholar 

  58. Farrar WL, Johnson HM, Farrar JJ. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol. 1981;126(3):1120–5.

    CAS  PubMed  Google Scholar 

  59. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med. 1997;185(2):317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21(7):637–47.

    Article  CAS  PubMed  Google Scholar 

  61. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia. 2007;23(3):315–23. doi:10.1080/02656730601175479.

    Article  CAS  PubMed  Google Scholar 

  62. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–61. doi:10.1016/j.eururo.2006.11.023.

    Article  PubMed  Google Scholar 

  63. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24. doi:10.1007/s11060-010-0389-0.

    Article  PubMed  Google Scholar 

  64. van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30(1):52–7. doi:10.1016/j.biomaterials.2008.09.044.

    Article  PubMed  Google Scholar 

  65. Matsumine A, Takegami K, Asanuma K, Matsubara T, Nakamura T, Uchida A, et al. A novel hyperthermia treatment for bone metastases using magnetic materials. Int J Clin Oncol. 2011;16(2):101–8. doi:10.1007/s10147-011-0217-3.

    Article  PubMed  Google Scholar 

  66. Jimbow K, Ishii-Osai Y, Ito S, Tamura Y, Ito A, Yoneta A, et al. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles. J Skin Cancer. 2013;2013:742925. doi:10.1155/2013/742925.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Imai T, Kikumori T, Akiyama M, Yokoyama K, Nishida Y, Fujimoto Y et al. A phase I study of hyperthermia using magnetite cationic liposome and alternating magnetic field for various refractory malignancies. In: 28th annual meeting of Japan society for thermal medicine, Nagoya, Japan, S3-6. 2011. http://www.congre.co.jo/jstm28/. Accessed 9 Sept 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kobayashi, T., Ito, A., Honda, H. (2016). Magnetic Nanoparticle-Mediated Hyperthermia and Induction of Anti-Tumor Immune Responses. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics