Skip to main content

Potentiating Immune System by Hyperthermia

  • Chapter
  • First Online:
Book cover Hyperthermic Oncology from Bench to Bedside

Abstract

Hyperthermia enhances the host immune responses against cancer through several mechanisms; activating immune cells (e.g., natural killer cells, dendritic cells, and cytotoxic T lymphocytes), canceling immune suppression, altering cell-surface molecules on cancer cells, and modifying adhesion molecules on immune cells and endothelial cells. This chapter discusses the positive effects of hyperthermia on the host immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terunuma H, Deng X, Dewan Z, et al. Potential role of NK cells in the induction of immune responses: Implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol. 2008;27:93–110.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng M, Chen Y, Xiao W, et al. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ostberg JR, Dayanc BE, Yuan M, et al. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 2007;82:1322–31.

    Article  CAS  PubMed  Google Scholar 

  4. Terunuma H, Deng X, Toki A, et al. Effects of hyperthermia on the host immune system: from NK cell-based science to clinical application. Therm Med. 2012;28:1–9.

    Article  Google Scholar 

  5. Farjadian S, Norouzian M, Younesi V, et al. Hyperthermia increases natural killer cell cytotoxicity against SW-872 liposarcoma cell line. Iran J Immunol. 2013;10:93–102.

    CAS  PubMed  Google Scholar 

  6. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 1994;39:93–8.

    Article  CAS  PubMed  Google Scholar 

  7. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol. 2005;6:593–9.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi T. Effects of hyperthermia and modification of thermosensitivity. Therm Med. 2007;23:171–9.

    Article  Google Scholar 

  9. Kida Y, Tsuji-Kawahara S, Ostapenko V, et al. Increased liver temperature efficiently auguments human cellular immune response: T-cell activation and possible monocyte translocation. Cancer Immunol Immunother. 2006;55:1459–69.

    Article  PubMed  Google Scholar 

  10. Vardam TD, Zhou L, Appenheimer MM, et al. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine. 2007;39:84–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen CH, Wang TL, Hung CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res. 2000;60:1035–42.

    CAS  PubMed  Google Scholar 

  12. Castelli C, Ciupitu AM, Rini F, et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res. 2001;61:222–7.

    CAS  PubMed  Google Scholar 

  13. Tanaka K, Ito A, Kobayashi T, et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticle. Int J Cancer. 2005;116:624–33.

    Article  CAS  PubMed  Google Scholar 

  14. Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21:1105–11.

    Article  CAS  PubMed  Google Scholar 

  15. Smyth MJ, Teng MWL, Swann J, et al. CD4 + CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol. 2006;176:1582–7.

    Article  CAS  PubMed  Google Scholar 

  16. Shang B, Liu Y, Jiang S, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015. doi:10.1038/srep15179.

    Google Scholar 

  17. Guo J, Zhu J, Sheng X, et al. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int J Cancer. 2007;120:2418–25.

    Article  CAS  PubMed  Google Scholar 

  18. Terunuma H, Wada A, Deng X, et al. Mild hyperthermia modulates the relative frequency of lymphocyte cell subpopulations: an increase in a cytolytic NK cell subset and a decrease in a regulatory T cell subset. Therm Med. 2007;23:41–7.

    Article  Google Scholar 

  19. Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia. 2008;24:41–56.

    Article  CAS  PubMed  Google Scholar 

  20. Kokura S, Okayama T, Adachi S, et al. The effects of hyperthermia on immune surveillance in tumor. Thermal Med. 2011;27 Supplement:79.

    Google Scholar 

  21. Atanackovic D, Pollok K, Faltz C, et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naïve/memory T-cell subtypes. Am J Physiol Regul Integr Comp Physiol. 2006;290:R585–94.

    Article  CAS  PubMed  Google Scholar 

  22. Deng X, Terunuma H, Terunuma A, et al. Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo expanded γδT cells or αβT cells. Int Immunopharmacol. 2014;22:486–91.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrone S, Marincola FM. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today. 1995;16:487–94.

    Article  CAS  PubMed  Google Scholar 

  24. Facoetti A, Nano R, Zelini P, et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res. 2005;11:8304–11.

    Article  CAS  PubMed  Google Scholar 

  25. Feenstra M, Veltkamp M, van Kuik J, et al. HLA class I expression and chromosomal deletions at 6p and 15q in head and neck sequamous cell carcinomas. Tissue Antigens. 1999;54:235–45.

    Article  CAS  PubMed  Google Scholar 

  26. Maleno I, Lopez-Nevot MA, Cabrera T, et al. Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother. 2002;51:389–96.

    Article  CAS  PubMed  Google Scholar 

  27. Madjd Z, SpendloveI PSE, et al. Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer. 2005;117:248–55.

    Article  CAS  PubMed  Google Scholar 

  28. Korkolopoulou P, Kaklamanis L, Pezzella F, et al. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer. 1996;73:148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kutomi G, Tamura Y, Torigoe SN. Effective immunotherapy by HSP-cancer peptide complex and immune escape of HLA class I antigen down regulation. Igaku No Ayumi (Japanese). 2007;221:627–30.

    CAS  Google Scholar 

  30. Pandha H, Rigg A, John J, Lemoine N. Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin Exp Immunol. 2007;148:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishigami S, Natsugoe S, Nakajo A, et al. HLA-class I expression in gastric cancer. J Surg Oncol. 2008;97:605–8.

    Article  CAS  PubMed  Google Scholar 

  32. Watson NFS, Ramage JM, Madjd Z, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer. 2006;118:6–10.

    Article  CAS  PubMed  Google Scholar 

  33. Kitamura H, Honma I, Torigoe T, et al. Down-regulation of HLA class I antigens is independent prognostic factor for clear cell renal cell carcinoma. J Urol. 2007;177:1269–72.

    Article  CAS  PubMed  Google Scholar 

  34. Romero JM, Jimenez P, Cabrera T, et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/β2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer. 2005;113:605–10.

    Article  CAS  PubMed  Google Scholar 

  35. Kitamura H, Torigoe T, Asanuma H, et al. Down-regulation of HLA class I antigens in prostate cancer tissues and up-regulation by histone deacetylase inhibition. J Urol. 2007;178:692–6.

    Article  CAS  PubMed  Google Scholar 

  36. Djajadiningrat RS, Horenblas S, Heideman DA, et al. Classic and nonclassic HLA class I expression in penile cancer and relation to HPV status and clinical outcome. J Urol. 2015;193:1245–51.

    Article  CAS  PubMed  Google Scholar 

  37. Koopman LA, Corver WE, van der Slik AR, et al. Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med. 2000;191:961–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Jong RA, Boerma A, Boezen HM, et al. Loss of HLA class I and mismatch repair protein expression in sporadic endometrioid endometrial carcinomas. Int J Cancer. 2012;131:1828–36.

    Article  PubMed  Google Scholar 

  39. Tsukahara T, Kawaguchi S, Torigoe T, et al. Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci. 2006;97:1374–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Terunuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Terunuma, H. (2016). Potentiating Immune System by Hyperthermia. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics