Skip to main content

Managing Pests and Diseases of Grain Legumes with Secondary Metabolites from Actinomycetes

  • Chapter
  • First Online:

Abstract

Protection of agricultural crops against fungal pathogens, pests, insects, and weeds by the application of chemical pesticides was slowdown in many countries because of the disadvantage of the products toward consumer’s health and environmental protection. Therefore, alternative approaches for protecting the crops from various pests and diseases and production of pesticides from microbial route have been attracted. Actinomycetes are the potential sources of novel metabolites, enzymes, and other chemicals with various biological applications. Among them, the applications of actinomycetes toward the protection of soil fertility and controlling the crop diseases are gaining increasing attention by the scientific community. A large number of novel compounds and enzymes with antifungal and insecticidal properties from actinomycetes have been isolated and characterized from various geographic regions around the world. In this chapter, metabolites and enzymes from actinomycetes with antifungal, insecticidal, and commonly available pesticide in the world market are discussed. The products derived from actinomycetes may also serve as key models for the crop protection and soil fertility with respect to the environmental protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn YJ, Lee SB, Lee HS, Kim GH (1998) Insecticidal and acaricidal activity of Carvacrol and β-Thujaplicine derived from Thujopsis dolabrata Var. Hondai Sawdust. J Chem Ecol 24(1):81–90

    Article  CAS  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashokvardhan T, Rajithasri AB, Prathyusha P, Satyaprasad K (2014) Actinomycetes from Capsicum annuum L. rhizosphere soil have the biocontrol potential against pathogenic fungi. Int J Curr Microbiol Appl Sci 3(4):894–903

    Google Scholar 

  • Axelrood PE, Clarke AM, Radley R, Zemcov SJ (1996) Douglas-fir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Can J Microbiol 42:690–700

    Article  CAS  PubMed  Google Scholar 

  • Balachandran C, Duraipandiyan V, Emi N, Ignacimuthu S (2015) Antimicrobial and cytotoxic properties of Streptomyces sp. (ERINLG-51) isolated from Southern Western Ghats. S Indian J Biol Sci 1:7–14

    Google Scholar 

  • Beer SV, Rundle JR, Norielli JL (1984) Recent progress in the development of biological control for fire blight. Acta Horticult 151:195–201

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bevan P, Ryder H, Shaw I (1995) Identifying small-molecule lead compounds: the screening approach to drug discovery. Trends Biotechnol 13:115–121

    Article  CAS  PubMed  Google Scholar 

  • Bream AS, Ghazal SA, El–Aziz ZKA, Ibrahim SY (2001) Insecticidal activity of selected actinomycetes strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66(2):503–544

    CAS  PubMed  Google Scholar 

  • Chamberlain K, Crawford DL (1999) In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol 23:641–646

    Article  CAS  PubMed  Google Scholar 

  • Chapman SR, Carter LP (1976) Crop production: principles and practices. W.H. Freeman and Co., San Francisco, pp 247–258

    Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Lin BR, Lin YC, Xie FC, Lu W, Fong WF (2005) A new fungicide produced by a Streptomyces sp. GAAS7310. J Antibiot 58:519–522

    Article  CAS  PubMed  Google Scholar 

  • Crawford DL (1997) Use of Streptomyces bacteria to control plant pathogens. US Patent No. 5:527–526

    Google Scholar 

  • Dhanasekaran D, Thajuddin N, Panneerselvam A (2012) Applications of actinobacterial fungicides in agriculture and medicine. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (eds) Fungicides for plant and animal diseases. In Tech, Rijeka, pp 29–54

    Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Article  Google Scholar 

  • El-Tarabily KA, Hardy GES (1997) The potential for the biological control of cavity spot disease of carrots caused by Pythium coloratum by streptomycete and non-streptomycete actinomycetes in Western Australia. New Phytol 137:495–507

    Article  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth-promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Misato T (1969) Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun 37:718–722

    Article  CAS  PubMed  Google Scholar 

  • Errakhi R, Lebrihi A, Barakate M (2009) In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J Appl Microbiol 107:672–681

    Article  CAS  PubMed  Google Scholar 

  • Feduchi E, Cosin M, Carrasco L (1985) Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis. J Antibiot 38:415–419

    Article  CAS  PubMed  Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci U S A 104(24):10282–10287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froes A, Macrae A, Rosa J, Franco M, Souza R, Soares R, Coelho R (2012) Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum. J Microbiol 50:798–806

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Humayun P, Srinivas V, Rajendran V, Bhimineni KB, Rupela O (2012) Plant growth-promoting traits of Streptomyces with biocontrol potential isolated from herbal vermicompost. Biocontrol Sci Technol 22(10):1199–1210

    Article  Google Scholar 

  • Gorajana A, Venkatesan M, Vinjamuri S, Kurada BV, Peela S, Jangam P, Poluri E, Zeeck A (2007) Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiol Res 162:322–327

    Article  CAS  PubMed  Google Scholar 

  • Haggag W, Enas MM, El Azzazy AM (2011) Optimization and production of antifungal hydrolysis enzymes by Streptomyces aureofaciens against Colletotrichum gloeosporioides of mango. Agric Sci 2:146–157

    Google Scholar 

  • Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Kim SH, Kim SZ, Park WH (2008) Antimycin A as a mitochondria damage agent induces an S phase arrest of the cell cycle in HeLa cells. Life Sci 83:346–355

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Baxter H (1993) Phytochemical dictionary “A handbook of bioactive compounds from plants”. Burgess Science Press/Taylor and Francis Ltd, Basingstoke, p 300

    Google Scholar 

  • Harman GE (2000) Myths and dogma of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • He J, Chen SW, Ruan LF (2003) Determination of the fungicide validamycin A by capillary zone electrophoresis with indirect UV detection. J Agric Food Chem 51:7523–7527

    Article  CAS  PubMed  Google Scholar 

  • Huang LS, Cobessi D, Tung EY, Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351:573–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismet A, Vikinesawary S, Paramaswari S, Wong WH, Ward A, Seki T, Fiedler HP, Goodfellow M (2004) Production and chemical characterization of antifungal metabolites from Micromonospora sp. M39 isolated from mangrove rhizosphere soil. World J Microbiol Biotechnol 20:523–528

    Article  CAS  Google Scholar 

  • Ivic D (2010) Curative and eradicative effects of fungicides. In: Carisse O (ed) Fungicides. In Tech, Rijeka, pp 1–20

    Google Scholar 

  • Iwasa T, Suetomi K, Kusuka T (1978) Taxonomic study and fermentation of producing organism and antimicrobial of mildiomycin. J Antibiot 31:511–518

    Article  CAS  PubMed  Google Scholar 

  • Jalali M, Chand L (1992) Races of Fusarium oxysporum sp. ciceris. Plant Dis 66:809–810

    Google Scholar 

  • Jian X, Pang X, Yu Y, Zhou X, Deng Z (2006) Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek 90:29–39

    Article  CAS  PubMed  Google Scholar 

  • Joo GJ (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Kabaluk, JT, Antonet MS, Mark SG, Stephanie G, Woo (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global. 99pp. Available online through www.IOBC-Global.org

  • Kathiresan K, Balagurunathan R, Masilamani SM (2005) Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian J Biotechnol 4:271–276

    Google Scholar 

  • Kaur T, Vasudev A, Sohal SK, Manhas RK (2014) Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol 14:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Khamna S, Yokata K, Pebery JF, Lumyong S (2009) Antifungal activity of Streptomyces spp. isolated from rhizosphere of Thai medical plants. Int J Integr Biol 6:143–147

    CAS  Google Scholar 

  • Kim YS, Kim HM, Chang C, Hwang IC, Oh H, Ahn JS, Kim KD, Hwang BK, Kim BS (2007) Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag Sci 63:1208–1214

    Article  CAS  PubMed  Google Scholar 

  • Kock I, Maskey RP, Biabani MA, Helmke E, Laatsch H (2005) 1-Hydroxy-1- norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived Streptomycetes. J Antibiot 58:530–534

    Article  CAS  PubMed  Google Scholar 

  • Koul O, Jain MP, Sharma VK (2000) Growth inhibitory and antifeedant activity of extracts from Melia dubia to Spodoptera litura and Helicoverpa armigera larvae. Indian J Exp Biol 38:63–68

    CAS  PubMed  Google Scholar 

  • Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, Kim KY (2012) Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechnol 22(10):1359–1366

    Google Scholar 

  • Li W, Csukai M, Corran A, Crowley P, Solomon PS, Oliver RP (2008) Malayamycin, a new Streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. Pest Manag Sci 64:1294–1302

    CAS  PubMed  Google Scholar 

  • Liu H, Qin S, Wang Y, Li W, Zhang J (2008) Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J Microbiol Biotechnol 24(10):2243–2248

    Article  CAS  Google Scholar 

  • Loliam B, Morinaga T, Chaiyanan S (2013) Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4. Sci Asia 39:584–590

    Article  Google Scholar 

  • Lu CG, Liu WC, Qiu JY, Wang HM, Liu T, Liu DY (2008) Identification of an antifungal metabolites produced by a potential biocontrol actinomycete strain A01. Braz J Microbiol 39:701–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour F, Azaizeh H, Saad B, Tadmor Y, Abo-Moch F, Said O (2004) The potential of Middle Eastern flora as a source of new safe bio-acaricides to control Tetranychus cinnabarinus, the Carmine Spider Mite. Phytoparasitica 32:66–72

    Article  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Omura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 31:91–98

    Article  CAS  PubMed  Google Scholar 

  • Park BS, Lee SE, Choi WS, Jeong CY, Song C, Cho KY (2002) Insecticidal and acaricidal activity of Pipernonaline and Piperoctadecalidine derived from dried Fruits of Piper longum (L). Crop Prot 21:249–251

    Article  CAS  Google Scholar 

  • Perner H, Schwarz D, George E (2006) Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Hortic Sci 41:628–632

    Google Scholar 

  • Pitt J (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56:184–192

    Article  CAS  PubMed  Google Scholar 

  • Prabavathy VR, Narayanasamy M, Kandasamy M (2006) Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol Control 39:313–319

    Article  CAS  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites producer by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procopio REL, Araujo WL, Maccheroni W Jr, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422

    Article  CAS  PubMed  Google Scholar 

  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    Article  CAS  PubMed  Google Scholar 

  • Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111

    Article  CAS  Google Scholar 

  • Reddy GS, Rao AS (1971) Antagonism of soil actinomycetes to some soil-borne plant pathogenic fungi. Indian Phytopathol 24:649–657

    Google Scholar 

  • Schnurer J, Magnusson J (2005) Antifungal lactic acid bacteria as bio preservatives. Trends Food Sci Technol 16:70–78

    Article  Google Scholar 

  • Sharma H, Parihar L (2010) Antifungal activity of extracts obtained from actinomycetes. J Yeast Fungal Res 1:197–200

    Google Scholar 

  • Sharma RN, Deshpande SG, Nanda B (1992) Biochemical analysis of acetone extract of Cassine glauca having antifeedant effect on castor semilooper (Achaeajanata). Indian J Agric Sci 62:574–574

    CAS  Google Scholar 

  • Shekhar N, Bhattacharya D, Kumar D, Gupta RK (2006) Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL2. Can J Microbiol 52:805–808

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Nakagawa Y, Sato Y, Furuma T, Igaroshi Y, Onaka H, Yoshida R, Kunoh H (2000) Studies on endophytic actinomycetes. I. Streptomyces sp. isolated from rododendron and its antifungal activity. J Gen Plant Pathol 66:360–366

    Article  CAS  Google Scholar 

  • Singh AK, Chhatpar HS (2011) Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. J Basic Microbiol 51:424–432

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Suh (1998) Antifungal biocontrol agents, a process for preparing and treating the same. International Patent Publication Number WO 1998/35017

    Google Scholar 

  • Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T (1989) Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot 42(11):1556–1561

    Article  CAS  PubMed  Google Scholar 

  • Tomlin CDS (2001) The pesticide manual (a world compendium), 12th edn. British Crop Protection Council, Thornton Heath

    Google Scholar 

  • Torkar KG, Vengust A (2008) The presence of yeasts, moulds and aflatoxin M1 in raw milk and cheese in Slovenia. Food Control 19:570–577

    Article  CAS  Google Scholar 

  • Trejo-Estrada SR, Sepulveda I, Crawford DL (1998a) In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14:865–872

    Article  Google Scholar 

  • Trejo-Estrada SR, Sepulveda I, Crawford DL (1998b) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Umezawa H, Okami T, Hashimoto T, Suhara Y, Hamada M, Takeuchi T (1965) A new antibiotic, kasugamycin. J Antibiot Ser A 18:101–103

    CAS  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanneste JL, Yu J, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velayudam S, Murugan K (2015) Sequential optimization approach for enhanced production of antimicrobial compound from Streptomyces rochei BKM-4. South Ind J Biol Sci 1(2):72–79

    Google Scholar 

  • Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Leeuwenhoek 91:351–372

    Google Scholar 

  • Wearing J (2003) Mycostop Biofungicide, Streptomyces griseoviridis Strain K61: proposed regulatory decision document. Canada-Pest Management Regulatory Agency, Ottawa, pp 1–17

    Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396(6712):679–682

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophtora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    Article  CAS  Google Scholar 

  • Xiong L, Li J, Kong F (2004) Streptomyces sp. 173, an insecticidal micro-organism from marine. Lett Appl Microbiol 38:32–37

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Jian-zhong L, Hui-li W (2005) Streptomyces avermitilis from marine. J Environ Sci 17(1):123–125

    Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31(8):1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • Yin S, Dong Y, Xu Y, Huang Q, Shen Q (2011) Upland rice seedling wilt and microbial biomass and enzyme activities of compost-treated soils. Biol Fertil Soils 47:303–313

    Article  Google Scholar 

  • Yoshii A, Moriyama H, Fukuharab T (2012) The novel kasugamycin 2′-N-acetyltransferase gene aac(2′)-IIa, Carried by the IncP island, confers kasugamycin resistance to rice pathogenic bacteria. Appl Environ Microbiol 78(16):5555–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The project was fully supported financially by King Saud University, through Vice Deanship of Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaddhas Valan Arasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Arasu, M.V., Esmail, G.A., Al-Dhabi, N.A., Ponmurugan, K. (2016). Managing Pests and Diseases of Grain Legumes with Secondary Metabolites from Actinomycetes. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_6

Download citation

Publish with us

Policies and ethics