Skip to main content

Enhancing Soil Health and Plant Growth Promotion by Actinomycetes

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

In recent times, numerous concrete efforts have been made by global scientific community for maintenance and judicious utilization of certain non-renewable natural resources like metal ores, fossil fuels and to an extent groundwater. However, soil, an important non-renewable asset, has received little attention and demands more awareness and exploration by researchers worldwide. Soil regeneration through chemical and biological processes of rock weathering takes several thousand years; thus, soil is classified as a vital, finite and non-renewable source. Soil health, thus, becomes a critical factor for humans, animals, plants and all natural ecosystems. Soil health deterioration, increased by industrialization and indiscriminate use of chemical fertilizers, has become a major environmental concern with high precedence. Public awareness to these problems has shifted approach to alternative strategies like using plant growth-promoting rhizobacteria (PGPR), also popular as bio-fertilizers, for achieving cleaner, safer and cost-effective increase in agricultural productivity. Amongst several bacteria reported as PGPR, actinomycete is one of the most promising options due to properties like nutrient cycling, antibiosis, rhizosphere competence and beneficial plant growth-promoting (PGP) traits. In this chapter, we intend to discuss about how actinomycetes are crucial as PGPR in maintaining soil health, fertility and agricultural productivity and investigate underlying PGPR mechanisms. We shall also briefly enlist few successful PGP actinomycetes, challenges associated and future implications to increase soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Ara I, Bakir MA, Hozzein WN, Kudo T (2013) Population, morphological and chemotaxonomical characterization of diverse rare actinomycetes in the mangrove and medicinal plant rhizosphere. Afr J Microbiol Res 7:1480–1488

    Google Scholar 

  • Behal V (2000) Bioactive products from Streptomyces. Adv Appl Microbiol 47:113–157

    Article  CAS  PubMed  Google Scholar 

  • Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel JL, Michelot P (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol Biochem 37:1738–1746

    Article  CAS  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHAO affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbial Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Bibb M (2005) Regulation of secondary metabolism in Streptomyces. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48:233–240

    Article  Google Scholar 

  • Bruhlmann F, Kim KS, Zimmerman W, Fiechter A (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbiol 60:2107–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeter Biodegr 84:104–110

    Article  CAS  Google Scholar 

  • Bui H (2014) Isolation of cellulolytic bacteria, including actinomycetes, from coffee exocarps in coffee producing areas in Vietnam. Int J Recycl Org Waste Agric 48:1–8

    Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430

    Article  CAS  PubMed  Google Scholar 

  • Cardenas F, Alvarez E, Castro-Alvarez MSD, Montero MS, Elson S, Sinisterra JV (2001) Three new lipases from actinomycetes and their use in organic reactions. Biocatal Biotransf 19:315–329

    Article  CAS  Google Scholar 

  • Chan M, Sim TS (1998) Malate synthase from Streptomyces clavuligerus NRRL3585: cloning, molecular characterization and its control by acetate. Microbiology 144:3229–3237

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Corona MEP, Klundert IVD, Verhoeven JTA (1996) Availability of organic and inorganic phosphorus compounds as phosphorus source of carex species. New Phytol 133:225–231

    Article  Google Scholar 

  • Correll DL (1998) The role of phosphorous in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Costa FG, Zucchi TD, Melo IS (2013) Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from Maize. Braz Arch Biol Technol 56:948–955

    Article  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycetes antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dash S, Jin C, Lee OO, Xu Y, Qian PY (2009) Antibacterial and antilarval settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol 36:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Duff RB, Webley M (1954) 2-ketogluconic acid is a natural chelator produced by soil bacteria. Chem Ind 1:1376–1377

    Google Scholar 

  • Emmanuel ESC, Ananth T, Anandkumar B, Maruthamuthu S (2012) Accumulation of rare earth elements by siderophore forming Arthrobacter luteolus isolated from rare earth environment of Charava, India. J Biosci 37:25–31

    Article  PubMed  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Ghosh PB, Saha P, Mayilraj S, Maiti TK (2013) Role of IAA metabolizing enzymes on production of IAA in root nodules of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric Biotechnol 2:234–239

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 12:1–15

    Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharthi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5:123–133

    Article  Google Scholar 

  • Gushterova A, Tonkova EV, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21:831–834

    Article  CAS  Google Scholar 

  • Hamdali H, Moursalou K, Tchangbedji G, Ouhdouch Y, Hafidi M (2012) Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr J Biotechnol 11:312–320

    CAS  Google Scholar 

  • Hassanin SM, Mehalawy AA, Hassanin NM, Zaki SA (2007) Induction of resistance and biocontrol of Rhizoctonia in cotton damping-off disease by rhizosphere bacteria and actinomycetes. Internet J Microbiol 3:1–31

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Elizabeth M, Wellington H (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoresis separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo-Martinez P, Villardon-Galindo P, Igual JM, Molina-Martinez E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:6389

    Article  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. [German]. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in Streptomyces: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth-promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilisation and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Kafilzadeh F, Dehdari F (2015) Amylase activity of aquatic actinomycetes isolated from the sediments of mangrove forests in south of Iran. Egypt J Aquat Res 41:197–201

    Article  Google Scholar 

  • Kaur N, Sharma S (2005) Production, optimization and characterization of extracellular invertase by an actinomycete strain. J Sci Ind Res 64:515–519

    CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soil: diversity and screening of antifungal compound, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Khan TO (2014) Chemical soil degradation. In: Osman KT (ed) Soil degradation, conservation and remediation. Springer, Dordrecht, pp 125–146

    Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Loqman S, Atit Bakra E, Clement C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control grapevine gray mold. World J Microbiol Biotechnol 25:81–91

    Article  Google Scholar 

  • Madden T, Ward JM, Ison AP (1996) Organic acid excretion by Streptomyces lividans TK24 during growth on defined carbon and nitrogen sources. Microbiology 142:3181–3185

    Article  CAS  PubMed  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential role in ecosystem. Afr J Biotechnol 7:181–191

    CAS  Google Scholar 

  • Manulis S, Shafrir E, Epstein A, Lichter I, Barash (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Mareckova MS, Kopecky J (2012) Actinobacteria: relationship to soil environment. In: Lal R (ed) Encyclopaedia of soil sciences, 2nd edn. Taylor and Francis press, London

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M (2007) Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica 21:32–39

    Article  CAS  Google Scholar 

  • Matzanke BF, Matzanke MG, Raymond KN (1989) Siderophore mediated iron transport. In: Loehr TM (ed) Iron carriers and iron proteins. VCH Verlagsgesellschaft, Weinheim, pp 1–121

    Google Scholar 

  • McLaren AD (1975) Soil as system of humus and clay immobilised enzymes. Chem Scr 8:97–99

    CAS  Google Scholar 

  • Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010) Strains of Bacillus circulans isolated from apple rhizosphere showing plant growth-promoting potential. Curr Sci 98:538–542

    CAS  Google Scholar 

  • Narayana KJ, Peddikotla P, Palakodety SJK, Yenamandra V, Muvva V (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res 11:49–55

    Google Scholar 

  • Nasrabadi G, Greiner R, Alikhani HA, Hamedi J (2012) Identification and determination of extracellular phytate degrading activity in actinomycetes. World J Microbiol Biotechnol 28:2601–2608

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MN, Winding A (2002) Soil health. In: Nielsen MN, Winding A, Binnerup S (eds) Microorganisms as indicators of soil health. National Environmental Research Institute, Roskilde, pp 13–20

    Google Scholar 

  • Nimmo GA, Nimmo HA (1984) The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase. Eur J Biochem 141:409–414

    Article  CAS  PubMed  Google Scholar 

  • Nimnoi P, Pongslip N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth-promoter production. World J Microbiol Biotechnol 26:193–203

    Article  CAS  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2014) Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J Plant Nutr 37:432–446

    Article  CAS  Google Scholar 

  • Ninawe S, Lal R, Kuhad RC (2006) Isolation of three xylanase producing strains of actinomycetes and their identification using molecular methods. Curr Microbiol 53:178–182

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouhdouch Y, Barakate M, Finance C (2001) Actinomycetes of Moroccan habitat: isolation and screening for antifungal activities. Eur J Soil Biol 37:69–74

    Article  Google Scholar 

  • Pandey A, Naik MM, Dubey SK (2010) Organic metabolites produced by Vibrio parahaemolyticus strain An3 isolated from Goan mullet inhibit bacterial fish pathogens. Afr J Biotechnol 9:7134–7140

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Poomthongdee N, Duangmal K, Pathomaree W (2015) Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J Antibiot 68:106–114

    Article  CAS  PubMed  Google Scholar 

  • Postma-Blaauw BM, de Geode RGM, Bloem J, Faber JH, Brussaard L (2010) Soil biota community structure and abundance under agriculture intensification and extensification. Appl Soil Ecol 91:460–473

    Google Scholar 

  • Pundarikakshudu R (1989) Studies of phosphate dynamics in Vertisol in relation to the yield and nutrient uptake of rainfed cotton. Exp Agric 25:39–45

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramchandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth-promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rozycki H, Strzelczyk E (1986) Organic acid production by Streptomyces spp. isolated from soil, rhizosphere and mycorrhizosphere of Pine (Pinus sylvestris L.). Plant Soil 96:337–345

    Article  CAS  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth-enhancing effects by a siderophore producing endophytic Streptomyces isolated from a Thai jasmine rice plant. Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Shaharokhi S, Bonjar S, Saadoun GHI (2005) Biological control of potato isolates of Rhizoctonia solani by Streptomyces olivaceus strain 115. Biotechnology 4:132–138

    Article  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial diversity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Solans M, Vobis G, Wall LG (2008) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    Article  Google Scholar 

  • Suthindhiran K, Jayasri MA, Dipali D, Prasar A (2014) Screening and characterization of protease producing actinomycetes from marine saltern. J Basic Microbiol 54:1098–1109

    Article  CAS  PubMed  Google Scholar 

  • Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinobacteria from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280

    Article  CAS  Google Scholar 

  • Thangapandian V, Ponmurugan P, Ponmurugan K (2007) Actinomycete diversity in the rhizospheric soils of different medicinal plants in Kolly hills-Tamil Nadu India, for secondary metabolite production. Asian J Plant Sci 6:66–70

    Article  Google Scholar 

  • Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, Zhou S (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stem and roots of rice. Microbial Ecol 53:700–707

    Article  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi AK (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tokala R, Strap J, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC 108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo M, Vega-Alonso P, Rodriguez R, Carro L, Cerda E, Alonso P, Molina-Martinez E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wezel GP, Mahr K, Konig M, Traag BA, Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55:624–636

    Article  PubMed  Google Scholar 

  • Yasmin F, Othman R, Sijam K, Saad MS (2009) Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. Afr J Microbiol Res 3:815–821

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jog, R., Nareshkumar, G., Rajkumar, S. (2016). Enhancing Soil Health and Plant Growth Promotion by Actinomycetes. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_3

Download citation

Publish with us

Policies and ethics