Skip to main content

Plant Growth-Promoting Actinomycetes: Mass Production, Delivery Systems, and Commercialization

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

The present global scenario demands researchers to come up with superior technological alternatives to chemical fertilizers and pesticides to enhance grain yield and to increase the quality and quantity of food grains as indiscriminate use of these synthetic inputs has largely affected soil, groundwater, agricultural commodities, animals, and plants. Possible alternatives could be the use of nontoxic and environmentally friendly microbial-based products/formulations for agriculture, maintaining a safe environment and creating a healthy society. Rhizospheric microbes, particularly actinomycetes, have drawn huge attention due to its ability in plant growth promotion and disease and insect pest control, without having any detrimental effect on the environment. The aim of this chapter is to provide handful information on mass production techniques, delivery systems, and commercialization of actinomycete-based products globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, El-Sayed EA, Rasmey AM (2013) Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3:182–B193

    Google Scholar 

  • Abdallah NA, Amer SK, Habeeb MK (2012) Screening of L-Glutaminase produced by actinomycetes isolated from different soils in Egypt. Int J Chem Tech Res 4:1451–1460

    CAS  Google Scholar 

  • Aghighi S, Bonjar GHS, Rawashdeh R, Batayneh S, Saadoun I (2004) First report of antifungal spectra of activity of Iranian actinomycetes strains against Alternaria solani, Alternaria alternata, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and S. cerevisiae. Asian J Plant Sci 3:463–471

    Article  Google Scholar 

  • Alam M, Dahrni S, Khaliq A, Srivastava SK, Samad A, Gupta MK (2012) A promising strain of Streptomyces sp. with agricultural traits for growth-promotion and disease management. Indian J Exp Microbiol 50:559–568

    CAS  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. Krieger Publishing Company, Malabar, p 467

    Google Scholar 

  • Anitha A, Rabeeth M (2009) Control of Fusarium wilt of tomato by bioformulation of Streptomyces griseus in greenhouse condition. Afr J Basic Appl Sci 1:9–14

    Google Scholar 

  • Arijit D, Sourav B, Reddy NV, Rajan SS (2013) Improved production and purification of pectinase from Streptomyces sp.GHBA10 isolated from Valapattanam mangrove habitat, Kerala, India. Int Res J Biol Sci 2:16–22

    Google Scholar 

  • Ayub MJ, Ahmad T, Ur Rehman MM, Khan A, Majid A (2014) Optimization of the conditions for submerged fermentation (SMF) of the Thermoactinomyces sacchari isolated from Azad Kashmir Pakistan to produce maximum amylase. Enzym Glob Vet 12:491–498

    Google Scholar 

  • Baniasadi F, Bonjar GHS, Baghizadeh A, Karimi Nik A, Jorjandi M, Aghighi S, Farokhi RP (2009) Biological Control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates. Am J Agric Biol Sci 4:146–151

    Article  Google Scholar 

  • Basha NS, Rekha R, Komala M, Ruby S (2009) Production of extracellular anti-leukaemic enzyme L-asparaginase from marine actinomycetes by solid state and submerged fermentation: purification and characterization. Trop J Pharm Res 8:353–360

    Article  CAS  Google Scholar 

  • Basilio A, Gonzalez I, Vicente MF, Gorrochategui J, González A, Cabello A, Genilloud O (2003) Patterns of antimicrobial activities from soil actinomycetes isolated under different condition of pH and salinity. J Appl Microbiol 95:814–823

    Article  CAS  PubMed  Google Scholar 

  • Behal V (2000) Bioactive products from Streptomyces. Adv Appl Microbiol 47:113–157

    Article  CAS  PubMed  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng 22:49–70

    CAS  Google Scholar 

  • Bhavdish N, Johri A, Sharma J, Virdi S (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotech 84:49–89

    Google Scholar 

  • Bull A, Goodfellow TM, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 42:219–257

    Article  Google Scholar 

  • Bussari B, Saudagar PS, Shaligram NS, Survase SA, Singhal RS (2008) Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J Ind Microbiol Biotechnol 35:49–58

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Wosten HA, Van Keulen G, Faber OG, Alves AM, Meijer WG, Dijkhuizen (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rootlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Colombo V, Maria F, Francisco M (2001) A polyketide biosynthetic gene cluster from Streptomyces antibioticus includes a LysR-type transcriptional regulator. Microbiology 147:3083–3092

    Article  CAS  PubMed  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Dalal JM, Kulkarni NS (2014) Antagonistic and plant growth-promoting potentials of indigenous endophytic actinomycetes of soybean (Glycine max Merril.). J Microbiol 3:1–12

    Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonism Streptomyces spp. Plant Soil 149:185–195

    Article  Google Scholar 

  • Elibol M, Muvituna F (1997) Characteristics of antibiotic production in a multiphase system. Process Biochem 32:417–422

    Article  CAS  Google Scholar 

  • El-Naggar MY, El-Aassar SA, Youssef AS, El-Sersy NA, Beltagy EA (2006) Extracellular β-mannanase production by the immobilization of the locally isolated Aspergillus niger. Int J Agric Biol 8:57–62

    CAS  Google Scholar 

  • El-Sayed MA, Valadon LRG, El-Shanshoury A (1987) Biosynthesis and metabolism of indole-3-acetic acid in Streptomyces mutabilis and Streptomyces atroolivaceus. Microbiol Lett 36:85–95

    CAS  Google Scholar 

  • El-Shanshoury AR (1991) Biosynthesis of indole-3-acetic acid in Streptomyces atroolivaceus and its changes during spore germination and mycelial growth. Microbiol Lett 67:159–164

    CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill) plant growth by rhizosphere competent 1- aminocyclopropane-1- carboxylic acid deaminase-producing Streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • Francisco GC, Zucchi TD, de Melo IS (2013) Biological Control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Braz Arch Biol Technol 56:948–955

    Article  Google Scholar 

  • Franklin TJ, Snow GA, Barrett-Bee KJ, Nolan RD (1989) Antifungal, antiprotozoal and antiviral agents. In: Franklin TJ, Snow GA (eds) Biochemistry of antimicrobial action. Chapman & Hall, New York, pp 137–161

    Chapter  Google Scholar 

  • Gangwar M, Rani S, Sharma N (2012) Diversity of endophytic actinomycetes from wheat and its potential as plant growth-promoting and biocontrol agents. J Adv Lab Res Biol 3:13–19

    Google Scholar 

  • Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production by Penicillium restrictum in solid state fermentation using babassu oil cake as substrate. Process Biochem 35:85–90

    Article  CAS  Google Scholar 

  • Goodfellow M, Simpson KE (1987) Ecology of streptomycetes. Front Appl Microbiol 2:97–125

    Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidhya MS, Deepthi K, Rupela O (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of sorghum caused by Macrophomina phaseolina. World J Microbiol Biotechnol 27:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011b) Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Igarashi Y, Iida T, Sasaki Y, Saito N, Yoshida R, Furumai T (2002) Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetologica 16:9–13

    Article  CAS  Google Scholar 

  • Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of Streptomycetes. Microb Ecol 50:73–81

    Article  PubMed  Google Scholar 

  • Isono K, Nagatsu J, Kobinata K, Sasaki K, Suzuki S (1965) Studies on polyoxins, antifungal antibiotics. Part I. Isolation and characterization of polyoxins A and B. Agric Boil Chem 29:848–854

    CAS  Google Scholar 

  • Jimenez-Esquilin AE, Roane ETM (2005) Isolation of antifungal producing rhizosphere actinomycetes from the Sagebrush (Artemisia tridentata). J Ind Microbiol Biotechol 32:378–381

    Article  CAS  Google Scholar 

  • Johns MR (1992) Production of secondary metabolites. Solid Substrate Cultiv 17:341–352

    Google Scholar 

  • Kagliwal LD, Survase SA, Singhal RS (2009) A novel medium for the production of cephamycin C by Nocardia lactamdurans using solid-state fermentation. Bioresour Technol 9:2600–2606

    Article  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur Asia J Biol Sci 4:23–32

    Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root-colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  • Kostova I, Ivanova N, Losev V, Dimitrova A, Vasileva R, Todorova D (2004) Method for production of pravastatin by fermentation, European Patent 1452602A1

    Google Scholar 

  • Kota KP, Sridhar P (1999) Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem 34:325–328

    Article  CAS  Google Scholar 

  • Lechevalier HA, Waksman SA (1962) The actinomycetes. III. Antibiotics of actinomycetes. Williams & Wilkins, Baltimore

    Google Scholar 

  • Lui BL, Tzeng YM (1999) Water content and water activity for the production of cyclodepsipeptide in solid state fermentation. Biotechnol Lett 21:657–661

    Article  Google Scholar 

  • Machado I, Teixeira JA, Rodríguez-Couto S (2013) Semi-solid-state fermentation: a promising alternative for neomycin production by the actinomycete Streptomyces fradiae. J Biotechnol 165:195–200

    Article  CAS  PubMed  Google Scholar 

  • Manulis S, Epstein E, Shafrir H, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Nigam P, Singh D (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 34:405–423

    Article  CAS  Google Scholar 

  • Ningthoujam DS, Sanasam S, Tamreihao K, Nimaichand S (2009) Antagonistic activities of local actinomycete isolates against rice fungal pathogens. Afr J Microbiol Res 3:737–742

    Google Scholar 

  • Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106

    Google Scholar 

  • Oskay AM, Üsame T, Azeri C (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3:441–446

    Article  Google Scholar 

  • Osman G, Mostafa S, Mohamed HS (2007) Antagonistic and insecticidal activities of some Streptomyces isolates. Pak J Biotechnol 4:65–71

    Google Scholar 

  • Pandey A (1992) Recent developments in solid state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  • Park JW, Lee JK, Kwon TJ, Yi DH, Kim YJ, Moon SH, Suh HH, Kang SM, Park YI (2003) Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol Lett 25:1827–1831

    Article  CAS  PubMed  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature and genotype effects on in vitro growth-promotion and epiphytic and endophytic colonization of tomato seedlings with a Pseudomonas bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Ribeiro ES, Zozilene NST, Núria MC, Diogo AJS, Aline SRB, Rodrigo PN (2012) Production of α-amylase from streptomyces sp. SLBA-08 strain using agro-industrial by-products Brazilian. Arch Biol Technol 55(5):793–800

    Article  Google Scholar 

  • Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    Article  CAS  PubMed  Google Scholar 

  • Rosa JC (2002) Influência das Condições de Transferência de O2 naProdução de Ácido Clavulânicopor Streptomyces clavuligerus. PhD thesis, University Federal of São Carlos, São Carlos-SP, Brazil

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Gupta GK, Ramteke R (2011) Colletotrichum truncatum (Schw) Andrus and W. D. Moore) the causal agent of anthracnose of soybean (Glycine max (L.) Merrill): a review. Soybean Res 9:31–52

    Google Scholar 

  • Shenpagam HN, Kanchana D, Dev SG, Sandhya R (2012) Isolation of endophytic actinomycetes from medicinal plants and its mutational effect in biocontrol activity. Int J Pharma Sci Res 3:4338–4344

    Google Scholar 

  • Siddique S, Syed Q, Adnan A, Nadeem M, Irfan M, Qureshi FA (2013) Production of avermectin B1b from Streptomyces avermitilis 41445 by batch submerged fermentation. Jundishapur J Microbiol 6, e7198

    Article  Google Scholar 

  • Sousa SC, Soares FAC, Garrido SM (2008) Characterization of Streptomycetes with potential to promote plant growth and biocontrol. Sci Agric (Piracicaba, Braz) 65:50–55

    Article  Google Scholar 

  • Sreeja SJ, Gopal KS (2013) Bio-efficacy of endophytic actinomycetes for plant growth promotion and management of bacterial wilt in tomato. Pest Manag Hortic Ecosyst 19:63–66

    Google Scholar 

  • Srividya S, Thapa A, Bhat VD, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soil borne fungal phytopathogens. Eur J Exp Biol 2:163–173

    CAS  Google Scholar 

  • Suseelabhai (2014) Actinomycetes – a new potential biocontrol agent for black pepper pathogens. Indian J Arecanut Spices Med Plants 16:41–46

    Google Scholar 

  • Suwan N, Boonying W, Prathusha K (2012) Antifungal activity of soil actinomycetes to control chilli anthracnose caused by Colletotrichum gloeosporioides. J Agri Technol 8:725–737

    Google Scholar 

  • Suzuki S, Yamamoto K, Okuda T, Nishio M, Nakanishi N, Komatsubara S (2000) Selective isolation and distribution of Actinomadura rugatobispora strains in soil. Actinomycetologica 14:27–33

    Article  Google Scholar 

  • Tahvonen R, Lahdenpera ML (1988) Biological control of Botrytis cinerea and Rhizoctonia solani in lettuce by Streptomyces sp. Ann Agric Fenn 27:107–116

    Google Scholar 

  • Takahashi Y, Omura S (2003) Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen App Microbiol 49:141–154

    Article  CAS  Google Scholar 

  • Takizawa M, Colwell RR, Akizawa, Russell TH (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. App Environ Microbiol 59:997–1002

    CAS  Google Scholar 

  • Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87

    Article  CAS  PubMed  Google Scholar 

  • Terkina IA, Parfenova VV, Ahn TS (2006) Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 42:173–176

    Article  CAS  Google Scholar 

  • Umezawa H, Okami Y, Hashimoto T, Suhara Y, Hamada M, Takeuchi T (1965) A new antibiotic, kasugamycin. J Antibiot 18A:101–103

    Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Ling MY (1998) Tetracycline production with sweet potato residue by solid state fermentation. Biotechnol Bioeng 33:1921–1028

    Google Scholar 

  • Yang SS, Yuan SS (1990) Oxytetracycline production by Streptomyces rimosus in solid state fermentation of sweet potato residue. World J Microbiol Biotechnol 6:236–244

    Article  CAS  PubMed  Google Scholar 

  • Yegneswaran PK, Gray MR, Thompson BG (1991) Experimental simulation of dissolved oxygen fluctuations in large fermenters: effect on Streptomyces clavuligerus. Biotechnol Bioeng 38:1203–1209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. K. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Reddy, K.R.K., Jyothi, G., Sowjanya, C., Kusumanjali, K., Malathi, N., Reddy, K.R.N. (2016). Plant Growth-Promoting Actinomycetes: Mass Production, Delivery Systems, and Commercialization. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_19

Download citation

Publish with us

Policies and ethics