Skip to main content

Role of Actinomycete-Mediated Nanosystem in Agriculture

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Actinobacteria are a group of microorganisms sharing the common behaviour of both bacteria and fungi known to play a multifunctional role in agricultural production systems. The major functions include the production of a wide array of growth-promoting compounds and metabolites including antibiotics that provide the host plants to withstand both biotic and abiotic stress conditions. Consequently, actinobacteria are often employed as a biocontrol agent (BCA) against dreadful plant pathogens. Further, actinobacteria colonized host plants and elute growth-promoting substances that assist in favouring stimulated growth of plants even under harsh environmental conditions such as nutrient deficiencies, drought, salinity and heavy metal contaminated soils. Several actinobacteria are involved in the nutrient solubilization and mobilization particularly phosphates and iron besides facilitating as helper bacteria in mycorrhizal symbiosis and biological nitrogen fixation. These groups of organisms also are responsible for the production of a volatile compound called “geosmin” which often referred as a biological indicator of soil fertility. Recently, large volume of research reports suggest that actinobacteria are capable of producing metal oxide nanoparticles that can be exploited in the green synthesis of nanomaterials and utilized in biological systems. Overall, the multifunctionality of actinobacteria makes this group of microorganisms very unique, and their potentials are yet to be exploited. This book chapter highlights the potential role of actinobacteria in growth promotion, biocontrol, alleviation of abiotic stresses and biosynthesis of metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla MH (2007) Enhancement of rice straw composting by lignocellulolytic actinomycete strains. Int J Agric Biol 9:106–109

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Baker D, Torrey JG, Kidd GH (1979) Isolation by sucrose-density fractionation and cultivation in vitro of actinomycetes from nitrogen fixing root nodules. Nature 281:76–78

    Article  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Babu RR, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–335

    CAS  PubMed  Google Scholar 

  • Bentley SD, Brosch R, Gordon SV, Hopwood DA, Cole ST (2004) Genomics of actinobacteria, the high G+C Gram-positive bacteria. In: Fraser CM, Read T, Nelson KE (eds) Microbial genomes. Humana Press, Totowa, NJ pp 333–360

    Google Scholar 

  • Bloemberg G, Lugtenberg B (2001) Molecular basis of plant growth-promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl 58:471–482

    Article  CAS  Google Scholar 

  • Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3:467–472

    CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nano-composite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Dhungana S, Ratledge C, Crumbliss AL (2004) Iron chelation properties of an extracellular siderophore exochelin MS. Inorg Chem 43:6274–6283

    Article  CAS  PubMed  Google Scholar 

  • Durga Devi G, Murugan K, Panneer Selvam C (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopest 7:54–66

    Google Scholar 

  • Fernando LM, Merca FE, Paterno ES (2013) Biogenic synthesis of gold nanoparticles by plant-growth-promoting bacteria isolated from Philippine Soils. Philipp Agric Sci 96:129–136

    Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant–microbe interactions. Environ Microbiol 12:1–12

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Gadkari D, Mörsdorf G, Meyer O (1992) Chemolithoautotrophic assimilation of dinitrogen by Streptomyces thermoautotrophicus UBT1: identification of an unusual N2-fixing system. J Bacteriol 174:6840–6843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Ghosh P, Maiti T (2011) Production and metabolism of indole acetic acid (IAA) by root nodule bacteria (Rhizobium): a review. J Pure Appl Microbiol 5:523–540

    CAS  Google Scholar 

  • Glick B (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamdali H, Hafidi M, Virolle M, Ouhdouch Y (2008b) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth-promoting actinobacteria. J Ind Microbiol Biotechnol 42:157–171

    Article  CAS  PubMed  Google Scholar 

  • Herrington PR, Craig JT, Sheridan JE (1987) Methyl vinyl ketone: a volatile fungistatic inhibitor from Streptomyces griseoruber. Soil Biol Biochem 19:509–512

    Article  CAS  Google Scholar 

  • Jiang J, He X, Cane DE (2006) Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J Am Chem Soc 128:8128–8129

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, He X, David E, Cane DE (2007) Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 3:711–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Joshi MV, Loria R (2007) Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol Plant Microbes Interact 20:751–758

    Article  CAS  Google Scholar 

  • Kalimuthu K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  Google Scholar 

  • Karthik L, Kumar G, Vishnu Kirthi A, Rahuman AA, Bhaskara Rao KV (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95

    Article  CAS  Google Scholar 

  • Krishnakumar S, Bai VDM (2015) Extracellular biosynthesis of silver nanoparticles using terrestrial Streptomyces sp-SBU3 and its antimicrobial efficiency against plant pathogens. Int J Tech Chem Res 1:112–118

    Google Scholar 

  • Lengke FM, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria a from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2012) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    Article  CAS  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Liong M, France B, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21:1684–1689

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces sp. Microbiology 140:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) 9 – functions of mineral nutrients: micronutrients. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 313–404

    Chapter  Google Scholar 

  • Mohanpuria MP, Rana N, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biochem 3:461–463

    CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth-promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW (2011) Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. J Appl Microbiol 111:443–455

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Yang SH, Suh JW (2013a) Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J Appl Microbiol 115:207–217

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013b) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Peto G, Molnar GL, Paszti Z, Geszti O, Beck A, Guczi L (2002) Electronic structure of gold nanoparticles deposited on SiOx/Si. Mater Sci Eng Chem 100:95–99

    Article  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 81:358–362

    Article  CAS  PubMed  Google Scholar 

  • Sahu MK, Sivakumar K, Kannan L (2007) Phosphate solubilizing actinomycetes in the estuarine environment: an inventory. J Environ Biol 28:795–798

    CAS  PubMed  Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6:61–70

    CAS  Google Scholar 

  • Samac DA, Willert AM, McBride MJ, Kinkel LL (2003) Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Appl Soil Ecol 22:55–66

    Article  Google Scholar 

  • Saravanakumar P, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Al-Dhabi NA (2014) Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl Nanosci 5:169–180

    Article  Google Scholar 

  • Sarikaya M (1999) Biomimetics: materials fabrication through biology. Proc Natl Acad Sci 96:14183–14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl LEO, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. doi:10.2147/nsa.s39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007a) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007b) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 6:1–32

    Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN, Al-Whaibi MH, Bahkali AH (2010) Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotypes grown under salt stress. Agric Sci China 9:671–680

    Article  CAS  Google Scholar 

  • Sivalingam P, Antony JJ, Siva D, Achiraman S, Anbarasu K (2012) Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf B: Biointerfaces 98:12–17

    Article  CAS  PubMed  Google Scholar 

  • Solans M (2007) Discaria trinervisFrankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high nitrogen. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81(10):887–893

    CAS  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Sharmila Rahale C (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M (ed) Nanotechnologies in food and agriculture. Springer International Publishing, Cham. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66:577–579

    Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN, Tsertsvadze GI, Frontasyeva MV, Zinicovscaia II, Wakstein MS, Khakhanov SN, Shvindina NV, Shklover VY (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4:1–10

    Article  Google Scholar 

  • Tu JC (1988) Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J Phytopathol 121:97–102

    Article  Google Scholar 

  • Unyayar S, Unal E, Unyayar A (2001) Relationship between production of 3-indoleacetic acid and peroxidase-laccase activities depending on the culture periods in Funalia trogii (Trametes trogii). Folia Microbiol 46:123–126

    Article  CAS  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles. Global J Biotech Biochem 5:153–160

    CAS  Google Scholar 

  • Valdés M, Pérez NO, Estrada-de los Santos P, Caballero-Mellado J, Peña-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza J, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Anand S, Ulrichs C, Singh SK (2013) Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss. Int Nano Lett 3:21

    Article  Google Scholar 

  • Wang Z, Chen J, Yang P, Yang W (2007) Biomimetic synthesis of gold nanoparticles and their aggregates using a polypeptide sequence. Appl Organomet Chem 21:645–651

    Article  CAS  Google Scholar 

  • Yamaura M, Uchiumi T, Higashi S, Abe M, Kucho K (2010) Identification by suppression subtractive hybridization of Frankia genes induced under nitrogen-fixing conditions. Appl Environ Microbiol 76:1692–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yuvaraj M, Subramanian KS (2014) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr. doi:10.1080/00380768.2014.979327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Subramanian, K.S., Muniraj, I., Uthandi, S. (2016). Role of Actinomycete-Mediated Nanosystem in Agriculture. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_15

Download citation

Publish with us

Policies and ethics