Skip to main content

Direct Plant Growth-Promoting Ability of Actinobacteria in Grain Legumes

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Grain legumes are important crops especially in developing countries for their high nutrient values. In a country like India where many people are vegetarian, they are a source of dietary protein. In addition to their food values, they are also a source of livestock fodder. They also can be used as biofertilizer due to their ability to fix nitrogen thereby making them the ideal crops for use in crop rotation. The role of bacteria including Bacillus and Pseudomonas in plant growth promotion is well established in various crops including grain legumes. While actinobacteria have not been fully explored for potential application in sustainable agriculture, their ubiquitous presence and capability for producing various plant growth-promoting traits make them an ideal candidate for use as biofertilizer for plants. The current chapter discusses the various direct plant growth-promoting abilities of actinobacteria with special reference to grain legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Adriano-Anaya M, Salvodor-Figueroa M, Ocampo JA, Garcia-Romera L (2005) Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis 40:151–156

    CAS  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Aksar AA (2012) Microbiological studies on the in vitro inhibitory effect of Streptomyces collinus albescens against some phytopathogenic fungi. Afr J Microbiol Res 6:3277–3283

    Google Scholar 

  • Aldesuquy HS, Mansour FA, Abou-Hamed SA (1998) Effect of the culture filtrate of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Krieger Publishing Company, Malabar

    Google Scholar 

  • Bajpai PD, Rao WVBS (1971) Phosphate solubilizing bacteria III: soil inoculation with phosphate solubilizing bacteria. Soil Sci Plant Nutr 17:46–53

    Article  CAS  Google Scholar 

  • Baranova NA, Gogotov IN (1974) Nitrogen fixation by propionic acid bacteria. Mikrobiologiya 43:791–794

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzz G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Mol Biol Rev 57:293–319

    CAS  Google Scholar 

  • Berndt H, Lowe DJ, Yates MG (1978) The nitrogen-fixing system of Corynebacterium autotrophicum. Purification and properties of the nitrogenase components and two ferredoxins. Eur J Biochem 86:133–142

    Article  CAS  PubMed  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90:6091–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth-promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Oliveira OCD, Urquiaga S, Reis VM, Olivares FLD, Baldana VLD, Bobereiner J (1995) Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biocontrol 58:471–482

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall of India, New Delhi, p 960

    Google Scholar 

  • Brimecombe MJ, De Liej FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Mercel Dekker, New York, pp 95–140

    Google Scholar 

  • Cacciari I, Lippi D, Bordeleau LM (1979) Effect of oxygen on batch and continuous cultures of a nitrogen-fixing Arthrobacter sp. Can J Microbiol 25:746–751

    Article  CAS  PubMed  Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155–162

    Article  CAS  PubMed  Google Scholar 

  • Caravaca F, Alguacil MM, Azcon R, Parlade J, Torres P, Roldan A (2005) Establishment of two ectomycorrhizal shrub species in a semiarid site after “in situ” amendment with sugar beet, rock phosphate and Aspergillus niger. Microb Ecol 49:73–82

    Article  CAS  PubMed  Google Scholar 

  • Carrano CJ, Jordan M, Dreshsel H, Schmid DG, Winkelmann G (2001) Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxymate and catecholate donor groups. Biometals 14:119–125

    Article  CAS  Google Scholar 

  • Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal occupant of actinorhizal nodules. J Biosci 38:685–693

    Article  PubMed  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187:111–114

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–189

    Chapter  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Roots exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action. Kluwer, Dordrecht

    Google Scholar 

  • Dell’mour M, Schenkeveld W, Oburger E, Fischer L, Kraemer S, Puschenreiter M, Lammerhofer M, Koellensperger G, Hann S (2012) Analysis of iron-phytosiderophore complexes in soil related samples: LC-ESI-MS/MS versus CE-MS. Electrophoresis 33:726–733

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbiol 10:348–358

    Article  CAS  Google Scholar 

  • Dimpka C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Ding J, Sun H, Su F, Xu Q, Huang Y, Ling P (1981) Studies on nitrogen fixation by actinomycetes. Acta Microbiol Sin 21:424–427

    Google Scholar 

  • Dobritsa SV, Potter D, Gookin TE, Berry AM (2001) Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences. Can J Microbiol 47:535–540

    Article  CAS  PubMed  Google Scholar 

  • Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2002) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 136:85–125

    Article  CAS  Google Scholar 

  • Egamberdieva D (2008) Plant growth-promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32:9–15

    Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K, Hussein AM, Kurtboke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium chloratum by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507

    Article  Google Scholar 

  • Fedorov MV, Kalininskaya TA (1961) A new species of nitrogen fixing Mycobacterium and its physiological properties. Mikrobiologiya 30:7–11

    Google Scholar 

  • Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147–151

    Article  CAS  PubMed  Google Scholar 

  • Filonow AB, Lockwood JL (1985) Evaluation of several actinomycetes and the fungus Hyphochytrium catenoides as biocontrol agents for Phytophthora root rot of soybean. Plant Dis 69:1033–1036

    Google Scholar 

  • Franche C, Bogusz D (2011) Signalling and communication in actinorhizal symbiosis. In: Perotto S, Baluska F (eds) Signalling and communication in plant symbiosis. Springer, Berlin, pp 73–92

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Saurez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Gadkari D, Morsdorf G, Meyer O (1992) Chemolithoautotrophic assimilation of dinitrogen by Streptomyces thermoautotrophicus UBT1: identification of an unusual N2-fixing system. J Bacteriol 174:6840–6843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia LC, Martinez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    Article  CAS  Google Scholar 

  • Giri S, Pati BR (2004) A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiol Immunol Hung 51:47–56

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzymes ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganism: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya MS, Rathore A (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus 3:254

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B (2015a) Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L.). 3. Biotech 5:799–806

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015b) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5:123–133

    Article  Google Scholar 

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483–491

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N, Tisa LS (2012) Phylogenetic perspective of nitrogen-fixing actinobacteria. Arch Microbiol 194:3–11

    Article  CAS  PubMed  Google Scholar 

  • Gunnell D, Eddleston M, Philips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate-solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Harikrishnan H, Shanmugaiah V, Balasubramanian N (2014) Optimization for production of Indole acetic acid (IAA) by plant growth-promoting Streptomyces sp. VSMGT1014 isolated from rice rhizosphere. Int J Curr Microb Appl Sci 3:158–171

    CAS  Google Scholar 

  • Harriott OT, Khairallah L, Benson DR (1991) Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain Cpl1. J Bacteriol 173:2061–2067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth-promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Reproduction of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathologica 78:1075–1078

    Article  CAS  Google Scholar 

  • Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates. Microbiology 76:421–428

    Article  CAS  Google Scholar 

  • Illmer PA, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Imbert M, Bechet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth-promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandhya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganism. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms: principles and application of microphos technology. Springer International Publishing, Cham, pp 31–62

    Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Vegetale et de Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Knapp R, Jurtshuk P (1998) Characterization of free-living nitrogen-fixing Streptomyces species and factors which affect their rates of acetylene reduction. Abstr Annu Meet Am Soc Microbiol 88:219

    Google Scholar 

  • Kosegarten H, Grolig F, Esch A, Glusenkamp KH, Mengel K (1999) Effects of NH4 +, NO3 - and HCO3 - on apoplast pH in the outer cortex of root zones of maize, as measured by the fluorescence ratio of fluorescein boronic acid. Planta 209:444–452

    Article  CAS  PubMed  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6

    Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kucho K, Hay AE, Normand P (2010) The determinants of the actinorhizal symbiosis. Microbes Environ 25:231–240

    Article  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    Article  CAS  PubMed  Google Scholar 

  • Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Postmaster A, Soon HP, Keast D, Carson KC (2012) Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals 25:285–296

    Article  CAS  PubMed  Google Scholar 

  • Leong J, Neilands JB (1976) Mechanisms of siderophore iron transport in enteric bacteria. J Bacteriol 126:823–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598

    Article  CAS  PubMed  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Martin GL (1982) A method for estimating ingrowth on permanent horizontal sample points. For Sci 28:110–114

    Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Meiwes J, Fiedler HP, Zahner H, Konetschny-Rapp S, Jung G (1990) Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 32:505–510

    Article  CAS  PubMed  Google Scholar 

  • Mengel K (1995) Iron availability in plant tissues – iron chlorosis on calcareous soils. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, pp 389–397

    Chapter  Google Scholar 

  • Meunchang S, Panichsakpatana S, Weaver RW (2006) Tomato growth in soil amended with sugar mill by-products compost. Plant Soil 280:171–176

    Article  CAS  Google Scholar 

  • Mishra SK, Taft WH, Putnam AR, Ries SK (1987) Plant growth regulatory metabolites from novel actinomycetes. J Plant Growth Regul 6:75–84

    Article  Google Scholar 

  • Mukai A, Komaki H, Takagi M, Shin-ya K (2009) Novel siderophore, JBIR-16, isolated from Nocardia tenerifensis NBRC 101015. J Antibiot (Tokyo) 62:601–603

    Article  CAS  Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D (ed) Encyclopaedia of soils in the environment. Elsevier, Oxford, pp 210–215

    Chapter  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil Biology. Springer, Heidelberg, pp 215–243

    Chapter  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2003) Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine producing isolate of Streptomyces griseoluteus. Plant Growth Reg 40:97–106

    Article  CAS  Google Scholar 

  • Neiland JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  Google Scholar 

  • Neiland JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  Google Scholar 

  • Nimaichand S, Tamrihao K, Yang LL, Zhu WY, Zhang YG, Li L, Tang SK, Ningthoujam DS, Li WJ (2013) Streptomyces hundungensis sp. nov., a novel actinomycete with antifungal activity and plant growth promoting traits. J Antibiot 66:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ningthoujam DS, Sanasam S, Tamreihao K, Nimaichand S (2009) Antagonistic activities of local actinomycete isolates against rice fungal pathogens. Afr J Microbiol Res 3:737–742

    Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Cameiro NP, Guimaracs CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–219

    Article  CAS  Google Scholar 

  • Onofre-Lemus J, Hernandez-Lucas I, Girard I, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankratov TA, Dedysh SN (2009) Cellulolytic streptomycetes from Sphagnum peat bogs and factors controlling their activity. Microbiology 78:227–233

    Article  CAS  Google Scholar 

  • Pattern C, Glick BR (2002) Role of Pseudomonas putida in indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Patzer SI, Braun V (2010) Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J Bacteriol 192:426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phi QT, Park YM, Seul KJ, Ryu CM, Park SH, Kim JG, Ghim SY (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth-promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20:1605–1613

    CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Podile AP, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Pradhan N, Shukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 18:773–777

    Google Scholar 

  • Rao VR (1973) Non-symbiotic nitrogen fixation in paddy fields. Doctoral thesis, Academy of Sciences USSR, Moscow. In: Subba Rao GV (ed) Soil microorganisms and plant growth. Mohan Primlani for Oxford & IBH Publishing, New Delhi, pp 82–97

    Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp. a root-invading diazotroph. J Bacteriol 175:7056–7065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S, van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbiol Interact 19:181–188

    Article  CAS  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganism and phosphorus availability. In: Pankhurst CE, Doubearnd BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects of using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNell AM, Prigent-Combarent C (2009a) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 229:47–56

    Article  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009b) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate-solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203:91–108

    Article  CAS  Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozycki H, Strzelczyk E (1986) Organic acids production by Streptomyces spp. isolated from soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). Plant Soil 96:337–345

    Article  CAS  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Ruppel S (1989) Isolation and characterization of dinitrogen fixing bacteria from the rhizosphere of Triticum aestivum and Ammophila arenaria. In: Vancura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil. Proceedings of an international symposium. Liblice, Prague, pp 253–262

    Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth-promoting ability of an auxin and siderophore producing isolate of Streptomyces under saline salt conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12:57–62

    Article  CAS  PubMed  Google Scholar 

  • Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342:179–186

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth-promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastava S, D’souza SF, Desai PD (2008) Production of indole-3-acetic acid by immobilized actinomycete (Kitasatospora sp.) for soil applications. Curr Sci 94:1595–1604

    CAS  Google Scholar 

  • Shutsrirung A, Chromkaew Y, Pathom-aree W, Choonluchanon S, Boonkerd N (2013) Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr 59:322–330

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization and use of plant growth-promotion under salt stress of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Soe KM, Yamakawa T (2013) Evaluation of effective Myanmar Bradyrhizobium strains isolated from Myanmar soybean and effects of co-inoculation with Streptomyces griseoflavus P4 for nitrogen fixation. Soil Sci Plant Nutr 59:361–370

    Article  CAS  Google Scholar 

  • Soe KM, Bhromsin A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325

    Article  Google Scholar 

  • Srividya S, Thapa A, Bhat DV, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soil borne fungal pathogens. Eur J Exp Biol 2:163–173

    CAS  Google Scholar 

  • Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci U S A 97:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tahvonen R (1982) Preliminary experiments into the use of Streptomyces spp. isolated from peat in the biological control of soil- and seed-borne diseases in peat culture. J Sci Agric Soc Finl 54:357–369

    Google Scholar 

  • Tahvonen R, Lahdenpera ML (1988) Biological control of Botrytis cinerea and Rhizoctonia solani in lettuce by Streptomyces sp. Ann Agric Fenn 27:107–116

    Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • To JPC, Kieber JJ (2008) Cytokinin signalling: two-components and more. Trends Plant Sci 13:85–92

    Article  CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe stimulators and their practical use: a review. Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:46–53

    Article  CAS  Google Scholar 

  • Valdes M, Perez N-O, Estrada-de los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 147–166

    Chapter  Google Scholar 

  • Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51

    Article  CAS  PubMed  Google Scholar 

  • Westhoff P (2009) The economics of biological nitrogen fixation in the global economy. In: Enerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Agronomy Monograph No. 52. American Society of Agronomy, Madison, pp 309–328

    Google Scholar 

  • Yadav BK, Tarafdar JC (2007) Availability of unavailable phosphate compounds as a phosphorus source for cluster bean (Cyamopsis tetragonoloba (L.) Taub.) through the activity of phosphatase and phytase produced by actinomycetes. J Arid Legum 4:110–116

    Google Scholar 

  • Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151:2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signalling network. Trends Plant Sci 14:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam Nimaichand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nimaichand, S., Devi, A.M., Li, WJ. (2016). Direct Plant Growth-Promoting Ability of Actinobacteria in Grain Legumes. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_1

Download citation

Publish with us

Policies and ethics