Skip to main content

Enhanced Thermo-Fluid Dynamic Modelling Methodologies for Convective Boiling

  • Chapter
  • First Online:
  • 673 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Analytical tools embedded in current thermal design practice for convective boiling systems are traditionally built upon correlated empirical data, which are constrained by the thermo-fluid dynamical complexities associated with stochastic and interactive behaviour of boiling fluid mixtures. These methodologies typically overlook or under-represent key characterising aspects of bubble growth dynamics, vapour/liquid momentum exchange, boiling fluid composition and local phase drag effects in boiling processes, making them inherently an imprecise science. Resulting predictive uncertainties in parametric estimations compromise the optimal design potential for convective boiling systems and contribute to operational instabilities, poor thermal effectiveness and resource wastage in these technologies. This book chapter first discusses the scientific evolution of current boiling analytical practice and predictive methodologies, with an overview of their technical limitations. Forming a foundation for advanced boiling design methodology, it then presents novel thermal and fluid dynamical enhancement strategies that improve modelling precision and realistic processes description. Supported by experimental validations, the applicability of the proposed strategies is ascertained for the entire convective boiling flow regime, which is currently not possible with existing methods. The energy-saving potential and thermal effectiveness underpinned by these modelling enhancements are appraised for their possible contributions towards a sustainable energy future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\(C_{d}\) :

Drag coefficient

\(C_{p}\) :

Specific heat (J/kg-K)

\(D_{w}\) :

Bubble departure diameter (m)

\(E\) :

Energy rate (W/m3)

\(f\) :

Bubble departure frequency (Hz)

\(\vec{F}_{lift}\) :

Lift force (N)

\(\vec{F}^{TD}\) :

Turbulence drift force (N)

\(\vec{F}_{wl}\) :

Wall lubrication force (N)

\(g\) :

Gravity (m/s2)

\(G\) :

Mass flow rate (kg/s)

\(H\) :

Enthalpy (kJ/kg)

\(h_{\lg }\) :

Latent heat (kJ/kg)

\(h_{sl}\) :

Interfacial heat transfer coefficient (W/m2-K)

\(Ja\) :

Jacob number

\(k\) :

Turbulent kinetic energy (m2/s2)

\(k_{eff}\) :

Effective conductivity (W/m-K)

\(K_{pq}\) :

Interfacial momentum transfer coefficient

\(L\) :

Total length of the channel

\(L_{H}\) :

Heated length of the channel

\(\dot{m}\) :

Mass flux (kg/m2-s)

\(p\) :

Pressure (Pa)

\(\dot{q}\) :

Heat flux (W/m2)

\(r_{c}\) :

Cavity radius (m)

\(T\) :

Temperature (K)

\(u^{*}\) :

Frictional velocity on the wall (m/s)

\(v\) :

Velocity (m/s)

\(\nabla \vec{V}\) :

Mean strain rate tensor

\(\nabla \vec{V}^{T}\) :

Turbulent strain rate tensor

\(We_{s}\) :

Surface Weber number

\(y^{ + }\) :

Dimensionless distance from wall

\(Y^{*}\) :

Dimensionless vertical distance from centre of channel

\(Z^{*}\) :

Dimensionless axial distance from channel inlet

b :

Bubble

d :

Droplet

b,d :

Bubble or droplet

E :

Evaporative

L :

Liquid

m :

Mixture

p :

Primary phase

q :

Secondary phase

Q :

Quenching

Sat :

Saturation

Sub :

Subcooled

Sup :

Superheated

v :

Vapour

w :

Wall

\(\alpha\) :

Volume fraction

\(\mu\) :

Viscosity (kg/m-s)

\(\rho\) :

Density (kg/m3)

\(\sigma\) :

Surface tension coefficient (n/m)

\(\bar{\tau }\) :

Stress tensor

\(\tau_{D}\) :

Bubble dwelling time (s)

\(\tau_{G}\) :

Bubble growth time (s)

\(\omega\) :

Specific dissipation rate (1/s)

\(\lambda\) :

Thermal diffusivity \((k/\rho c_{p} )\)

References

  1. Collier, J. G. (1972). Convective Boiling and Condensation. McGraw-Hill book Company (UK). Second edition.

    Google Scholar 

  2. Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem eng prog. 45.

    Google Scholar 

  3. Martinelli, R. C., & Nelson, D. B. (1948). Prediction of pressure drop during forced circulation boiling of water. Tran Journal ASME, 70, 695.

    Google Scholar 

  4. Zuber, N., & Findaly, J. (1965). Average Volumetric Concentration in two-phase flow systems. Trans ASME Journal of Heat Transfer, 87, 453.

    Article  Google Scholar 

  5. Bangkof, S. G. (1960). A variable density single-fluid model of two-phase model with particular reference to water-vapour flow, Trans ASME. J. Heat Trans. Series C.82.

    Google Scholar 

  6. Marchaterre, J. F., & Hoglund, B. W. (1962). Correlation for two-phase flow. Nucleonic, 142.

    Google Scholar 

  7. Griffith, P. (1963). The slug-annular flow regime transition at elevated pressure. ANL-6796.

    Google Scholar 

  8. Bergles, A. E., & Rohesnow, W. M. (1964). The determination of forced-convection surface-boiling heat transfer. ASME. Journal Heat Transfer, 86, 365–372.

    Article  Google Scholar 

  9. Kandlikar, S. G. (1990). A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. ASME. Journal Heat Transfer, 112, 219–228.

    Article  Google Scholar 

  10. Boyd, R. D., & Meng, X. (1995). Boiling curve correlation for subcooled flow boiling. International Journal Heat and Mass Transfer, 38–4, 758–760.

    Article  Google Scholar 

  11. Cole, R. (1960). A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6–4, 533–538.

    Article  Google Scholar 

  12. Thorncroft, G. E., Klausnera, J. F., & Mei, R. (1998). An experimental investigation of bubble growth and detachment in vertical up-flow and down-flow boiling. International Journal Heat and Mass Transfer, 41, 3854–3871.

    Article  Google Scholar 

  13. Situ, R., Mi, Y., Ishii, M., & Mori, M. (2004). Photographic study of bubble behaviours in forced convection subcooled boiling. International Journal Heat and Mass Transfer, 47, 3659–3667.

    Article  Google Scholar 

  14. Situ, R., Hibiki, T., Ishii, M., & Mori, M. (2005). Bubble lift-off size in forced convective subcooled boiling flow. International Journal Heat and Mass Transfer, 48, 5536–5548.

    Article  Google Scholar 

  15. Basu, N., Warrier, G. R., & Dhir, V. K. (2005). Wall heat flux partitioning during subcooled flow foiling: part 1—model development. ASME Joural Heat Transfer, 127, 131–140.

    Article  Google Scholar 

  16. Podowski, R. M., Drew, D. A., Lahey, R. T., Podowski, J. R., & M.Z. (1997). A mechanistic model of ebullition cycle in forced convection sub-cooled boiling. In: Proceeding of the 8th International topical meeting on nuclear reactor thermal hydraulic. Kyoto, Japan. vol. 3.

    Google Scholar 

  17. Situ, R., Ishii, M., Hibiki, T., Tu, J. Y., Yeoh, G. H., & Mori, M. (2008). Bubble departure frequency in forced convective subcooled boiling flow. International Journal Heat and Mass Transfer, 51, 6268–6282.

    Article  MATH  Google Scholar 

  18. Kurul, N., & Podowski, M. Z. (1990). Multidimensional effects in forced convection Subcooled Boiling. In: 9th International Heat Trans Conference. Jerusalem. Israel, Proceedings.

    Google Scholar 

  19. Koncar, B., Kljenak, I., & Mavko, B. (2004). Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure. International Journal Heat and Mass Transfer, 47, 1499–1513.

    Article  MATH  Google Scholar 

  20. Krepper, E., Koncar, B., & Egorov, Y. (2007). CFD modelling of subcooled boiling-Concept, validation and application to fuel assembly design. Nuclear Engineering and Design, 237, 716–731.

    Article  Google Scholar 

  21. Koncar, B., & Krepper, E. (2008). CFD simulation of convective flow boiling of refrigerant in a vertical annulus. Nuclear Engineering and Design, 238, 693–706.

    Article  Google Scholar 

  22. Abishek, S., Narayanaswamy, R., & Narayanan, V. (2013). Effect of heater size and Reynolds number on the partitioning of surface heat flux in subcooled jet impingement boiling. International Journal Heat and Mass Transfer, 59, 247–261.

    Article  Google Scholar 

  23. Pierre, C. C. S. T., & Bankoff, S. G. (1967). Vapour volume profiles in developing two-phase flow. International Journal Heat and Mass Transfer, 10, 237–249.

    Article  Google Scholar 

  24. Menter, F. R. (2009). Review of the SST turbulence model experience from an industrial perspective, Int. Journal Computational Fluid Dynamics, 23–4, 305–316.

    Article  MATH  Google Scholar 

  25. Inc, A. N. S. Y. S. (2012). ANSYS FLUENT theory guide. Release, 14, 5.

    Google Scholar 

  26. Troshko, A. A., & Hassan, Y. A. (2001). A two-equation turbulence model of turbulent bubbly flows. International Journal Multi-phase Flow, 27, 1965–2000.

    Article  MATH  Google Scholar 

  27. Sato, Y., & Sadatomi, M. (1981). Momentum and heat transfer in two-phase bubble flow—I. Theory. International Journal Multiphase Flow, 7–2, 167–177.

    Article  MATH  Google Scholar 

  28. Sato, Y., & Sekoguch, K. (1975). Liquid velocity distribution in two-phase bubble flow. International Journal Multiphase Flow, 2–1, 79–95.

    Article  Google Scholar 

  29. Lavieville, J., Quemerais, E., Mimouni, S., Boucker, M., & Mechitoua, N. (2005). NEPTUNE CFD V1.0 Theory Manual, EDF.

    Google Scholar 

  30. Del Valle M, V. H., & Kenning, D. B. R. (1985). Subcooled flow boiling at high heat flux. International Journal Heat and Mass Transfer 28, 1907–1920.

    Google Scholar 

  31. Lemmert, M., & Chawla, L. M. (1977). Influence of flow velocity on surface boiling heat transfer coefficient in Heat Transfer in boiling. NY, USA: Academic Press and Hemisphere.

    Google Scholar 

  32. Tolubinski, V. I., & Kostanchuk, D. M. (1970). Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. In: 4th International Heat Transfer Conference, Paris, France. Proceeding.

    Google Scholar 

  33. Apte, S. V., Gorokhovski, M., & Moin, P. (2003). LES of atomizing spray with stochastic modelling of secondary breakup. International Journal Multiphase Flow, 29, 1503–1522.

    Article  MATH  Google Scholar 

  34. Unal, H. C. (1979). Maximum Bubble diameter, maximum bubble growth time and bubble growth rate during subcooled nucleate flow boiling of water up to 17.7MN/m2. International Journal Heat and Mass Transfer, 19, 643–649.

    Article  Google Scholar 

  35. Kataoka, I., Ishii, M., & Mishima, K. (1983). Generation and size distribution of droplet in annular two-phase flow. ASME Journal Fluid Engineering, 105, 230–238.

    Article  Google Scholar 

  36. Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AlChE Journal, 25–5, 843–855.

    Article  Google Scholar 

  37. Moraga, F. J., Bonetto, F. J., & Lahey, R. T. (1999). Lateral forces on spheres in turbulent uniform shear flow. International Journal Multiphase Flow, 25, 1321–1372.

    Article  MATH  Google Scholar 

  38. De Bertodano, M. L. (1991). Turbulent bubbly flow in a triangular duct. Ph.D. Thesis, Rensselaer Polytechnic Institute, New York.

    Google Scholar 

  39. Hosokawa, S., Tomiyama, A., Misaki, S., & Hamada, T. (2002). Lateral migration of single bubbles due to the presence of wall. In: ASME Joint U.S.-European Fluids Engineering Division Conference, Montreal, Canada.

    Google Scholar 

  40. Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Parts I & II. Chemical Engineering, 48(141–6), 173–180.

    Google Scholar 

  41. Pierre, C. C. S. T. (1965). Frequency-Response analysis of steam voids to sinusoidal power modulation in a thin-walled boiling water coolant channel, Arogan National Labratoary, ANL-7041.

    Google Scholar 

  42. Lemmon, E. W., McLinden, M. O., & Friend, D. G., (2013). Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilak T. Chandratilleke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chandratilleke, T.T., Nadim, N. (2018). Enhanced Thermo-Fluid Dynamic Modelling Methodologies for Convective Boiling. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics