Skip to main content

Experimental Investigation and Molecular-Based Modeling of Crude Oil Density at Pressures to 270 MPa and Temperatures to 524 K

  • Chapter
  • First Online:
Book cover Application of Thermo-fluid Processes in Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 691 Accesses

Abstract

A predictive crude oil density model reliable over a wide range of temperature and pressure conditions is increasingly important for the safe production of oil and accurate estimation of oil reserves. While hydrocarbon density data at low-to-moderate temperatures and pressures are plentiful, data and validated models that have reasonable predictive capability for crude oil at extreme temperatures and pressures are limited. In this investigation, we present new experimental density data for crude oil sample obtained from the Gulf of Mexico region. Density data are measured at pressures to 270 MPa and temperatures to 524 K. These conditions simulate those encountered from ultra-deep formations to platforms. These density data points are then used to validate both empirical-based and molecular-based equations of state models. Results show that the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) models, without the use of any fitting parameters, predict the crude oil density within 1% of the experimental data. These results are superior to the density predictions obtained with the high-temperature, high-pressure, volume-translated cubic equations of state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baird, T., Fields, T., Drummond, R., Mathison, D., Langseth, B., Martin, A., & Silipigno, L. (1998). High-pressure, high-temperature well logging, perforating and testing. Oilfield Review, 10(2), 50–67.

    Google Scholar 

  2. Avant, C., Daungkaew, S., Befera, B., Danpanich, S., Laprabang, W., De Santo, I., Heath, G., Osman, K., Khan, Z. A., Russell, J., Sims, P., Slapal, M., & Tevis, C. (2012). Testing the limits in extreme well conditions. Oilfield Review, 24(3), 4–19.

    Google Scholar 

  3. De Bruijn, G., Skeates, C., Greenaway, R., Harrison, D., Parris, M., James, S., Mueller, F., Ray, S., Riding, M., Temple, L., & Wutherich, K. (2008). High-pressure, high-temperature technologies. Oilfield Review, 20(3), 46–60.

    Google Scholar 

  4. Brelvi, S. W. (1998). Generalized correlations for the isothermal compressibility of reservoir fluids and crude oils. Saudi Aramco Journal of Technology, Spring, 30–34.

    Google Scholar 

  5. Ramage, W. E, Castanier, L. M., & Ramey, H. J. (1987). The comparative economics of thermal recovery projects. DOE/SF/11564-22, SUPRI TR-56, July 1987.

    Google Scholar 

  6. Larsen, J., Sorensen, H., Yang, T., & Pedersen, K. S. (2011). EOS and viscosity modeling for highly undersaturated Gulf of Mexico reservoir fluids. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.

    Google Scholar 

  7. Petrosky, G. E., & Farshad, F. F. (1993) Pressure-volume-temperature correlations for Gulf of Mexico crude oils. In SPE 26644, Presented at the 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Houston, Texas, October 3–6, 1993.

    Google Scholar 

  8. Petrosky, G. E., & Farshad, F. F. (1998). Pressure-volume-temperature correlations for Gulf of Mexico crude oils. SPEREE, 1(6), 416–420.

    Google Scholar 

  9. Elsharkawy, A. M., & Alikhan, A. A. (1997). Correlations for predicting solution gas/oil ratio, oil formation volume factor, and undersaturated oil compressibility. Journal of Petroleum Science and Engineering, 17, 291–302.

    Google Scholar 

  10. Dindoruk, B., & Christman, P. G. (2004). PVT properties and viscosity correlations for Gulf of Mexico oils. SPEREE, 7(6), 427–437.

    Google Scholar 

  11. Farshad, F., LeBlanc, J. L., Garber, J. D., & Osorio, J. G. (1996). Empirical PVT correlations for colombian crude oils. In SPE 36105, Presented at the 4th Latin American and Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad and Tobago April 23–26, 1996.

    Google Scholar 

  12. Hanafy, H. H., Macary, S. M., ElNady, Y. M., Bayomi, A. A., & El Batanony, M. H. (1997). A new approach for predicting the crude oil properties. In SPE 37439, Presented at the 1997 SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 9–11, 1997.

    Google Scholar 

  13. Almehaideb, R. A. (1997). Improved PVT correlations for UAE crude oils. In SPE 37691, Presented at the 1997 Middle East Oil Conference and Exhibition held in Manama, Bahrain, March 17–20, 1997.

    Google Scholar 

  14. Al-Marhoun, M. A. A New correlation for undersaturated isothermal oil compressibility. SPE 81432-SUM.

    Google Scholar 

  15. Vazquez, M., & Beggs, H. D. (1980). Correlations for fluid physical property prediction. Journal of Petroleum Technology, 32(6), 968–970.

    Google Scholar 

  16. Brelvi, S. W., & O’Connell, J. P. (1972). Corresponding states correlations for liquid compressibility and partial molal volumes of gases at infinite dilution in liquids. AIChE Journal, 18(6), 1239–1243.

    Google Scholar 

  17. Leelavanichkul, P., Deo, M. D., & Hanson, F. V. (2004). Crude oil characterization and regular solution approach to thermodynamic modeling of solid precipitation at low pressure. Petroleum Science and Technology, 22, 973–990.

    Google Scholar 

  18. Riazi, M. R. (1997). A continuous model for C7+ fraction characterization of petroleum fluids. Industrial & Engineering Chemistry Research, 36, 4299–4307.

    Google Scholar 

  19. Whitson, C. (1983). Characterizing hydrocarbon plus fractions. SPE J., 23, 683–694.

    Google Scholar 

  20. Katz, D. L., & Firoozabadi, A. (1978). Predicting phase behavior of condensate/crude oil systems using methane interaction coefficients. Journal of Petroleum Technology, 30, 1649–1655.

    Google Scholar 

  21. AlHammadi, A. A., Vargas, F. M., & Chapman, W. G. (2015). Comparison of cubic-plus-association and perturbed-chain statistical associating fluid theory methods for modeling asphaltene phase behavior and pressure-volume-temperature properties. Energy & Fuels, 29, 2864–2875.

    Google Scholar 

  22. He, P., & Ghoniem, A. F. (2015). A group contribution pseudocomponent method for phase equilibrium modeling of mixtures of petroleum fluids and a solvent. Industrial & Engineering Chemistry Research, 54, 8809–8820.

    Google Scholar 

  23. Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64.

    Google Scholar 

  24. Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27, 1197–1203.

    Google Scholar 

  25. Wu, Y., Bamgbade, B., Liu, K., McHugh, M. A., Baled, H., Enick, R. M., Burgess, W. A., Tapriyal, D., & Morreale, B. D. (2011). Experimental measurements and equation of state modeling of liquid densities for long-chain n-Alkanes at pressures to 265 MPa and temperatures to 523 K. Fluid Phase Equilibria, 311, 17–24.

    Google Scholar 

  26. Bamgbade, B. A., Wu, Y., Burgess, W. A., Tapriyal, D., Gamwo, I. K., Baled, H. O., Enick, R. M., & McHugh, M. A. (2015). Measurements and modeling of high-temperature, high-pressure density for binary mixtures of propane with n-Decane and propane with n-Eicosane. The Journal of Chemical Thermodynamics, 84, 108–117.

    Google Scholar 

  27. Bamgbade, B. A., Wu, Y., Burgess, W. A., Tapriyal, D., Gamwo, I. K., Baled, H. O., Enick, R. M., & McHugh, M. A. (2015). High-temperature, high-pressure volumetric properties of propane, squalane and their mixtures: Measurement and PC-SAFT modeling. Industrial & Engineering Chemistry Research, 54, 6804–6811.

    Google Scholar 

  28. Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 40, 1244–1260.

    Google Scholar 

  29. Pedersen, K. S., & Sorensen, C. H. (2007). PC-SAFT equation of state applied to petroleum reservoir fluids. SPE 110483.

    Google Scholar 

  30. Punnapala, S., & Vargas, F. M. (2013). Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction. Fuel, 108, 417–429.

    Google Scholar 

  31. Ting, P. D., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21, 647–661.

    Google Scholar 

  32. Liu, K., Wu, Y., McHugh, M. A., Baled, H., Enick, R. M., & Morreale, B. D. (2010). Equation of state modeling of high-pressure, high-temperature hydrocarbon density data. The Journal of Supercritical Fluids, 55, 701–711.

    Google Scholar 

  33. Linstrom, P. J., & Mallard, W. G. (Eds.). (2005). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov/chemistry/fluid/.

  34. Dymond, J., & Malhotra, R. (1988). International Journal of Thermophysics, 9, 941–951.

    Google Scholar 

  35. Pedersen, K. S., Milter, J., & Sorensen, H. (2004). Cubic equations of state applied to HT/HP and highly aromatic fluids. SPE J, 9, 186–192.

    Google Scholar 

  36. Peneloux, A., & Rauzy, E. (1982). A consistent correction for Redlich-Kwong-Soave volumes. Fluid phase equilibria, 8, 7–23.

    Google Scholar 

  37. Pedersen, K. S., Milter, J., & Sorensen, H. (2004). Cubic equations of state applied to HT/HP and highly aromatic fluids. SPE J, 9, 186–192.

    Google Scholar 

  38. Baled, H., Enick, R. M., Wu, Y., McHugh, M. A., Burgess, W., Tapriyal, D., & Morreale, B. D. (2012). Prediction of hydrocarbon densities using volume-translated SRK and PR equations of state fit to high temperature, high pressure PVT data. Fluid Phase Equilibria, 317, 65–76.

    Google Scholar 

  39. Buckley, J. S. (1999). Asphaltene precipitation and solvent properties of crude oils. Energy & Fuels, 13, 328–332.

    Google Scholar 

  40. Buckley, J. S, Hirasaki, G. J., Liu, Y., Von Drasek, S., Wang, J. X., & Gil, B. S. (1998). Asphaltene precipitation and solvent properties of crude oils. Petroleum Science and Technology, 16, 251–285.

    Google Scholar 

  41. Panuganti, S. R., Vargas, F. M., Gonzalez, D. L., Kurup, A. S., & Chapman, W. G. (2012). PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel, 93, 658–669.

    Google Scholar 

  42. Gonzalez, D. L., Ting, P. D., Hirasaki, G. J., & Chapman, W. G. (2005). Prediction of asphaltene instability under gas injection with PC-SAFT equation of state. Energy & Fuels, 19, 1230–1234.

    Google Scholar 

  43. Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy & Fuels, 21, 1231–1242.

    Google Scholar 

  44. Vargas, F. M., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2009). Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy & Fuels, 23, 1140–1146.

    Google Scholar 

  45. Gonzalez, D. L., Vargas, F. M., Hirasaki, G. J., & Chapman, W. G. (2008). Modeling study of CO2-induced asphaltene precipitation. Energy & Fuels, 22, 757–762.

    Google Scholar 

  46. Gonzalez, D. L. (2008). Modeling of asphaltene precipitation and deposition tendency using the PC-SAFT equation of state. Doctoral dissertation. Retrieved from ProQuest Dissertations and Theses. (Accession Order No. 3309879).

    Google Scholar 

  47. Huang, S., & Radosz, M. (1991). Phase behavior of reservoir fluids V: SAFT model of CO, and bitumen systems. Fluid Phase Equilibria, 70, 33–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac K. Gamwo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gamwo, I.K., Bamgbade, B.A., Burgess, W.A. (2018). Experimental Investigation and Molecular-Based Modeling of Crude Oil Density at Pressures to 270 MPa and Temperatures to 524 K. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics