Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 559 Accesses

Abstract

Inorganic chemistry plays an essential role in human life. As depicted in Fig. 1.1, there are 24 known essential elements, but the possible biological roles of some other elements (e.g., Cr, B) in life science remain to be understood. For those bioactive metal ions, their biological properties can be significantly affected by their coordinating ligands. Similarly, the biological activities of metallodrugs are affected both by the metal ion and by the coordinating ligand(s). Coordination of appropriate ligand(s) to metal ions can adjust the reduction potentials and/or ligand exchange reactions with biomolecules, thereby regulating the important biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrer NJ, Sadler PJ (2011) Medicinal inorganic chemistry: state of the art, new trends, and a vision of the future. In: Alessio E (ed) Bioinorg Med Chem. Wiley-VCH, Germany, pp 1–37

    Chapter  Google Scholar 

  2. Ronconi L, Sadler PJ (2007) Using coordination chemistry to design new medicines. Coord Chem Rev 251(13–14):1633–1648

    Article  CAS  Google Scholar 

  3. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E, Specchia G, Sica S, Divona M, Levis A, Fiedler W, Cerqui E, Breccia M, Fioritoni G, Salih HR, Cazzola M, Melillo L, Carella AM, Brandts CH, Morra E, von Lilienfeld-Toal M, Hertenstein B, Wattad M, Lübbert M, Hänel M, Schmitz N, Link H, Kropp MG, Rambaldi A, La Nasa G, Luppi M, Ciceri F, Finizio O, Venditti A, Fabbiano F, Döhner K, Sauer M, Ganser A, Amadori S, Mandelli F, Döhner H, Ehninger G, Schlenk RF, Platzbecker U (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121

    Article  CAS  Google Scholar 

  4. Au W-Y, Kumana CR, Kou M, Mak R, Chan GCF, Lam C-W, Kwong Y-L (2003) Oral arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia 102(1). doi:10.1182/blood-2003-01-0298

    Google Scholar 

  5. Barry NPE, Sadler PJ (2012) Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies. Chem Soc Rev 41(8):3264–3279

    Article  CAS  Google Scholar 

  6. Abeysinghe PM, Harding MM (2007) Antitumour Bis(cyclopentadienyl) metal complexes: titanocene and molybdocene dichloride and derivatives. Dalton Trans 32:3474–3482

    Article  CAS  Google Scholar 

  7. Che C-M, Sun RW-Y, Yu W-Y, Ko C-B, Zhu N, Sun H (2003) Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem Commun 14:1718–1719

    Article  CAS  Google Scholar 

  8. Berners-Price SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Sung C-M, Mong S-M, Sadler PJ, Crooke ST (1986) In vivo antitumor activity and in vitro cytotoxic properties of Bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride. Cancer Res 46(11):5486–5493

    CAS  Google Scholar 

  9. Ni W-X, Man W-L, Cheung MT-W, Sun RW-Y, Shu Y-L, Lam Y-W, Che C-M, Lau T-C (2011) Osmium(VI) complexes as a new class of potential anti-cancer agents. Chem Commun 47(7):2140–2142

    Article  CAS  Google Scholar 

  10. Alama A, Viale M, Cilli M, Bruzzo C, Novelli F, Tasso B, Sparatore F (2009) In vitro cytotoxic activity of Tri-n-Butyltin(IV)lupinylsulfide hydrogen fumarate (IST-FS 35) and Preliminary antitumor activity in vivo. Invest New Drugs 27(2):124–130

    Article  CAS  Google Scholar 

  11. Bandoli G, Dolmella A, Tisato F, Porchia M, Refosco F (2009) Mononuclear six-coordinated Ga(III) complexes: a comprehensive survey. Coord Chem Rev 253(1–2):56–77

    Article  CAS  Google Scholar 

  12. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30(4):708–749

    CAS  Google Scholar 

  13. Magda D, Lecane P, Wang Z, Hu W, Thiemann P, Ma X, Dranchak PK, Wang X, Lynch V, Wei W, Csokai V, Hacia JG, Sessler JL (2008) Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res 68(13):5318–5325

    Article  CAS  Google Scholar 

  14. Li H, Lai CS, Wu J, Ho PC, de Vos D, Tiekink ERT (2007) Cytotoxicity, Qualitative Structure-Activity Relationship (QSAR), and anti-tumor activity of bismuth dithiocarbamate complexes. J Inorg Biochem 101(5):809–816

    Article  CAS  Google Scholar 

  15. Yamase T (2005) Anti-tumor, -Viral, and -Bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 15(45):4773–4782

    Article  CAS  Google Scholar 

  16. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205(4972):698–699

    Article  CAS  Google Scholar 

  17. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222(5191):385–386

    Article  CAS  Google Scholar 

  18. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584

    Article  CAS  Google Scholar 

  19. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39(35):8113–8127

    Article  CAS  Google Scholar 

  20. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65(13–14):1667–1685

    Article  CAS  Google Scholar 

  21. Fichtinger-Schepman AMJ, van Oosterom AT, Lohman PHM, Berends F (1987) cis-diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(II). Cancer Res 47(11):3000–3004

    CAS  Google Scholar 

  22. Baik M-H, Friesner RA, Lippard SJ (2003) Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine? J Am Chem Soc 125(46):14082–14092

    Article  CAS  Google Scholar 

  23. Legendre F, Bas V, Kozelka J, Chottard J-C (2000) A complete kinetic study of GG versus AG Platination suggests that the doubly aquated derivatives of cisplatin are the actual DNA binding species. Chem Eur J 6(11):2002–2010

    Article  CAS  Google Scholar 

  24. Kozelka J, Legendre F, Reeder F, Chottard J-C (1999) Kinetic aspects of interactions between DNA and platinum complexes. Coord Chem Rev 190–192:61–82

    Article  Google Scholar 

  25. Legendre F, Kozelka J, Chottard J-C (1998) GG versus AG Platination: a kinetic study on hairpin-stabilized duplex oligonucleotides. Inorg Chem 37(16):3964–3967

    Article  CAS  Google Scholar 

  26. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci 100(7):3611–3616

    Article  CAS  Google Scholar 

  27. Reedijk J (1999) Why does cisplatin reach guanine-N7 with Competing S-donor Ligands available in the cell? Chem Rev 99(9):2499–2510

    Article  CAS  Google Scholar 

  28. Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106

    Article  CAS  Google Scholar 

  29. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel M-T (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64(10):3593–3598

    Article  CAS  Google Scholar 

  30. Aris SM, Farrell NP (2009) Towards antitumor active trans-platinum compounds. Eur J Inorg Chem 10:1293–1302

    Article  CAS  Google Scholar 

  31. Chen S, Xu D, Jiang H, Xi Z, Zhu P, Liu Y (2012) Trans-Platinum/Thiazole complex interferes with Sp1 Zinc-Finger Protein. Angew Chem Int Ed 51(49):12258–12262

    Article  CAS  Google Scholar 

  32. Laguna A (2008) Modern supramolecular gold chemistry: gold-metal interactions and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  33. Fricker SP (2010) Cysteine proteases as targets for metal-based drugs. Metallomics 2(6):366–377

    Article  CAS  Google Scholar 

  34. de Almeida A, Soveral G, Casini A (2014) Gold compounds as aquaporin inhibitors: new opportunities for therapy and imaging. Med Chem Comm 5:1444–1453

    Article  CAS  Google Scholar 

  35. Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L (2009) Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 253(11–12):1692–1707

    Article  CAS  Google Scholar 

  36. Urig S, Fritz-Wolf K, Réau R, Herold-Mende C, Tóth K, Davioud-Charvet E, Becker K (2006) Undressing of phosphine gold(I) complexes as irreversible inhibitors of human disulfide reductases. Angew Chem Int Ed 45(12):1881–1886

    Article  CAS  Google Scholar 

  37. Angelucci F, Sayed AA, Williams DL, Boumis G, Brunori M, Dimastrogiovanni D, Miele AE, Pauly F, Bellelli A (2009) Inhibition of schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J Biol Chem 284(42):28977–28985

    Article  CAS  Google Scholar 

  38. Ilari A, Baiocco P, Messori L, Fiorillo A, Boffi A, Gramiccia M, Di Muccio T, Colotti G (2012) A cold-containing drug against parasitic polyamine metabolism: the X-Ray structure of trypanothione reductase from leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 42(2–3):803–811

    Article  CAS  Google Scholar 

  39. Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284(6):3998–4008

    Article  CAS  Google Scholar 

  40. Karver MR, Krishnamurthy D, Kulkarni RA, Bottini N, Barrios AM (2009) Identifying potent, selective protein tyrosine phosphatase inhibitors from a library of Au(I) complexes. J Med Chem 52(21):6912–6918

    Article  CAS  Google Scholar 

  41. Jeon K-I, Jeong J-Y, Jue D-M (2000) Thiol-reactive metal compounds inhibit NF-κB activation by blocking IκB kinase. J Immunol 164(11):5981–5989

    Article  CAS  Google Scholar 

  42. Zhang J-J, Ng K-M, Lok C-N, Sun RW-Y, Che C-M (2013) Deubiquitinases as potential anti-cancer targets for gold(III) complexes. Chem Commun 49(45):5153–5155

    Article  CAS  Google Scholar 

  43. Martins AP, Ciancetta A, de Almeida A, Marrone A, Re N, Soveral G, Casini A (2013) Aquaporin Inhibition by gold(III) compounds: new insights. Chem Med Chem 8(7):1086–1092

    Article  CAS  Google Scholar 

  44. Martins AP, Marrone A, Ciancetta A, Cobo AG, Echevarrya M, Moura TF, Re N, Casini A, Soveral G (2012) Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound. PLoS ONE 7(5):e37435

    Article  CAS  Google Scholar 

  45. Zou J, Taylor P, Dornan J, Robinson SP, Walkinshaw MD, Sadler PJ (2000) First crystal structure of a medicinally relevant gold protein complex: unexpected binding of [Au(PEt3)]+ to histidine. Angew Chem Int Ed 39(16):2931–2934

    Article  CAS  Google Scholar 

  46. Messori L, Scaletti F, Massai L, Cinellu MA, Russo Krauss I, di Martino G, Vergara A, Paduano L, Merlino A (2014) Interactions of gold-based drugs with proteins: crystal structure of the adduct formed between ribonuclease A and a cytotoxic gold(III) compound. Metallomics 6:233–236

    Article  CAS  Google Scholar 

  47. Messori L, Scaletti F, Massai L, Cinellu MA, Gabbiani C, Vergara A, Merlino A (2013) The mode of action of anticancer gold-based drugs: a structural perspective. Chem Commun 49(86):10100–10102

    Article  CAS  Google Scholar 

  48. Berners-Price SJ, Filipovska A (2011) Gold compounds as therapeutic agents for human diseases. Metallomics 3(9):863–873

    Article  CAS  Google Scholar 

  49. Pillarsetty N, Katti KK, Hoffman TJ, Volkert WA, Katti KV, Kamei H, Koide T (2003) In vitro and in vivo antitumor properties of tetrakis((trishydroxymethyl) phosphine)gold(I) chloride. J Med Chem 46:1130–1132

    Article  CAS  Google Scholar 

  50. Tian S, Siu F-M, Kui SCF, Lok C-N, Che C-M (2011) Anticancer gold(I)-phosphine complexes as potent autophagy-inducing agents. Chem Commun 47(33):9318–9320

    Article  CAS  Google Scholar 

  51. Simon TM, Kunishima DH, Vibert GJ, Lorber A (1981) Screening trial with the coordinated gold compound auranofin using mouse lymphocytic leukemia P388. Cancer Res 41(1):94–97

    CAS  Google Scholar 

  52. Christopher P, Leamon JAR, Vlahov Iontcho R, Kleindl Paul J, Vetzel Marilynn, Westrick Elaine (1985) Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res 45:32–39

    Google Scholar 

  53. Sadler PJ, Sue RE (1994) The chemistry of gold drugs. Met-Based Drugs 1(2–3):107–144

    Article  CAS  Google Scholar 

  54. Shaw CF III (1999) Gold-Based Therapeutic Agents. Chem Rev 99(9):2589–2600

    Article  CAS  Google Scholar 

  55. Kamei H, Koide T, Kojima T, Hashimoto Y, Hasegawa M (1998) Effect of gold on survival of tumor-bearing mice. Cancer Biother Radiopharm 13(5):403–406

    Article  CAS  Google Scholar 

  56. Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP (2006) A novel small-molecule inhibitor of protein kinase ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 66(3):1767–1774

    Article  CAS  Google Scholar 

  57. Baker MV, Barnard PJ, Berners-Price SJ, Brayshaw SK, Hickey JL, Skelton BW, White AH (2006) Cationic, linear Au(I) N-heterocyclic carbene complexes: synthesis. Struct Anti-Mitochondrial Act Dalton Trans 30:3708–3715

    Google Scholar 

  58. Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A (2008) Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J Am Chem Soc 130(38):12570–12571

    Article  CAS  Google Scholar 

  59. Rubbiani R, Kitanovic I, Alborzinia H, Can S, Kitanovic A, Onambele LA, Stefanopoulou M, Geldmacher Y, Sheldrick WS, Wolber G, Prokop A, Wölfl S, Ott I (2010) Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J Med Chem 53(24):8608–8618

    Article  CAS  Google Scholar 

  60. Rubbiani R, Can S, Kitanovic I, Alborzinia H, Stefanopoulou M, Kokoschka M, Mönchgesang S, Sheldrick WS, Wölfl S, Ott I (2011) comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J Med Chem 54(24):8646–8657

    Article  CAS  Google Scholar 

  61. Meyer A, Bagowski CP, Kokoschka M, Stefanopoulou M, Alborzinia H, Can S, Vlecken DH, Sheldrick WS, Wölfl S, Ott I (2012) On the biological properties of alkynyl phosphine gold(I) complexes. Angew Chem Int Ed 51(39):8895–8899

    Article  CAS  Google Scholar 

  62. Ott I, Qian X, Xu Y, Vlecken DHW, Marques IJ, Kubutat D, Will J, Sheldrick WS, Jesse P, Prokop A, Bagowski CP (2009) A gold(I) phosphine complex containing naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J Med Chem 52(3):763–770

    Article  CAS  Google Scholar 

  63. Chui CH, Wong RS-M, Gambari R, Cheng GY-M, Yuen MC-W, Chan K-W, Tong S-W, Lau F-Y, Lai PB-S, Lam K-H, Ho C-L, Kan C-W, Leung KS-Y, Wong W-Y (2009) Antitumor activity of diethynylfluorene derivatives of gold(I). Bioorg Med Chem 17(23):7872–7877

    Article  CAS  Google Scholar 

  64. Yan K, Lok C-N, Bierla K, Che C-M (2010) Gold(I) complex of N, N′-disubstituted cyclic thiourea with in vitro and in vivo anticancer properties-potent tight-binding inhibition of thioredoxin reductase. Chem Commun 46:7691–7693

    Article  CAS  Google Scholar 

  65. Sun RW-Y, Li CK-L, Ma D-L, Yan JJ, Lok C-N, Leung C-H, Zhu N, Che C-M (2010) Stable anticancer gold(III)-porphyrin complexes: effects of porphyrin structure. Chem Eur J 16(10):3097–3113

    Article  CAS  Google Scholar 

  66. Lum CT, Liu X, Sun RW-Y, Li X-P, Peng Y, He M-L, Kung HF, Che C-M, Lin MCM (2010) Gold(III) porphyrin 1a inhibited nasopharyngeal carcinoma metastasis in vivo and inhibited cell migration and invasion in vitro. Cancer Lett 294(2):159–166

    Article  CAS  Google Scholar 

  67. Lum CT, Yang ZF, Li HY, Wai-Yin Sun R, Fan ST, Poon RTP, Lin MCM, Che C-M, Kung HF (2006) Gold(III) compound is a novel chemocytotoxic agent for hepatocellular carcinoma. Int J Cancer 118(6):1527–1538

    Article  CAS  Google Scholar 

  68. Tu SP, Sun RW-Y, Lin MCM, Cui JT, Zou B, Gu Q, Kung HF, Che C-M, Wong BCY (2009) Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer 115(19):4459–4469

    Article  CAS  Google Scholar 

  69. Li W, Xie Y, Sun RWY, Liu Q, Young J, Yu WY, Che CM, Tam PK, Ren Y (2009) Inhibition of Akt sensitises neuroblastoma cells to gold(III) porphyrin 1a, a novel antitumour drug induced apoptosis and growth inhibition. Br J Cancer 101(2):342–349

    Article  CAS  Google Scholar 

  70. Lum CT, Huo L, Sun RW-Y, Li M, Kung HF, Che C-M, Lin MCM (2011) Gold(III) porphyrin 1a prolongs the survival of melanoma-bearing mice and inhibits angiogenesis. Acta Oncol 50(5):719–726

    Article  CAS  Google Scholar 

  71. Lum CT, Wong A, Lin MC, Che C-M, Sun RW-Y (2013) Gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem Commun 49:4364–4366

    Article  CAS  Google Scholar 

  72. Sun RW-Y, Lok C-N, Fong TT-H, Li CK-L, Yang ZF, Zou T, Siu AF-M, Che C-M (2013) A dinuclear cyclometalated gold(III)-phosphine complex targeting thioredoxin reductase inhibits hepatocellular carcinoma in vivo. Chem Sci 4:1979–1988

    Article  CAS  Google Scholar 

  73. Yan JJ, Chow AL-F, Leung C-H, Sun RW-Y, Ma D-L, Che C-M (2010) Cyclometalated gold(III) complexes with N-heterocyclic carbene ligands as topoisomerase I poisons. Chem Commun 46(22):3893–3895

    Article  CAS  Google Scholar 

  74. Buckley RG, Elsome AM, Fricker SP, Henderson GR, Theobald BRC, Parish RV, Howe BP, Kelland LR (1996) Antitumor properties of some 2-[(Dimethylamino)methyl]phenylgold(III) complexes. J Med Chem 39(26):5208–5214

    Article  CAS  Google Scholar 

  75. Parish RV, Howe BP, Wright JP, Mack J, Pritchard RG, Buckley RG, Elsome AM, Fricker SP (1996) Chemical and biological studies of dichloro(2-((dimethylamino)methyl)phenyl)gold(III). Inorg Chem 35(6):1659–1666

    Article  CAS  Google Scholar 

  76. Zhu Y, Cameron BR, Mosi R, Anastassov V, Cox J, Qin L, Santucci Z, Metz M, Skerlj RT, Fricker SP (2011) Inhibition of the cathepsin cysteine proteases B and K by square-planar cycloaurated gold(III) compounds and investigation of their anti-cancer activity. J Inorg Biochem 105(5):754–762

    Article  CAS  Google Scholar 

  77. Messori L, Marcon G, Cinellu MA, Coronnello M, Mini E, Gabbiani C, Orioli P (2004) Solution chemistry and cytotoxic properties of novel organogold(III) compounds. Biorg Med Chem 12(23):6039–6043

    Article  CAS  Google Scholar 

  78. Gabbiani C, Mastrobuoni G, Sorrentino F, Dani B, Rigobello MP, Bindoli A, Cinellu MA, Pieraccini G, Messori L, Casini A (2011) Thioredoxin reductase, an emerging target for anticancer metallodrugs: enzyme inhibition by cytotoxic gold(III) compounds studied with combined mass spectrometry and biochemical assays. Med Chem Comm 2(1):50–54

    Article  CAS  Google Scholar 

  79. Shaik N, Martínez A, Augustin I, Giovinazzo H, Varela-Ramírez A, Sanaú M, Aguilera RJ, Ma Contel (2009) synthesis of apoptosis-inducing iminophosphorane organogold(III) complexes and study of their interactions with biomolecular targets. Inorg Chem 48(4):1577–1587

    Article  CAS  Google Scholar 

  80. Vela L, Contel M, Palomera L, Azaceta G, Marzo I (2011) Iminophosphorane–Organogold(III) complexes induce cell death through mitochondrial ROS production. J Inorg Biochem 105(10):1306–1313

    Article  CAS  Google Scholar 

  81. Zhang J-J, Sun RW-Y, Che C-M (2012) A dual cytotoxic and anti-angiogenic water-soluble gold(III) complex induces endoplasmic reticulum damage in hela cells. Chem Commun 48(28):3388–3390

    Article  CAS  Google Scholar 

  82. Messori L, Abbate F, Marcon G, Orioli P, Fontani M, Mini E, Mazzei T, Carotti S, O′Connell T, Zanello P (2000) Gold(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds. J Med Chem 43(19):3541–3548

    Article  CAS  Google Scholar 

  83. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med Res Rev 30(3):550–580

    CAS  Google Scholar 

  84. Gabbiani C, Scaletti F, Massai L, Michelucci E, Cinellu MA, Messori L (2012) Medicinal gold compounds form tight adducts with the copper chaperone Atox-1: biological and pharmacological implications. Chem Commun 48:11623–11625

    Article  CAS  Google Scholar 

  85. Milacic V, Chen D, Ronconi L, Landis-Piwowar KR, Fregona D, Dou QP (2006) A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S Proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res 66(21):10478–10486

    Article  CAS  Google Scholar 

  86. Saggioro D, Rigobello MP, Paloschi L, Folda A, Moggach SA, Parsons S, Ronconi L, Fregona D, Bindoli A (2007) Gold(III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway. Chem Biol 14(10):1128–1139

    Article  CAS  Google Scholar 

  87. Ronconi L, Aldinucci D, Dou QP, Fregona D (2010) Latest insights into the anticancer activity of gold(III)-dithiocarbamato complexes. Anti-Cancer Agents Med Chem 10:283–292

    Article  CAS  Google Scholar 

  88. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    Article  CAS  Google Scholar 

  89. Muller P, Schroder B, Parkinson JA, Kratochwil NA, Coxall RA, Parkin A, Parsons S, Sadler PJ (2003) Nucleotide cross-linking induced by photoreactions of platinum(IV)-azide complexes. Angew Chem Int Ed 42(3):335–339

    Article  CAS  Google Scholar 

  90. Farrer NJ, Woods JA, Salassa L, Zhao Y, Robinson KS, Clarkson G, Mackay FS, Sadler PJ (2010) A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angew Chem Int Ed 49(47):8905–8908

    Article  CAS  Google Scholar 

  91. Zhao Y, Farrer NJ, Li H, Butler JS, McQuitty RJ, Habtemariam A, Wang F, Sadler PJ (2013) De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex. Angew Chem Int Ed 52(51):13633–13637

    Article  CAS  Google Scholar 

  92. Min Y, Li J, Liu F, Yeow EK, Xing B (2013) Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed 53(4):1012–1016

    Article  CAS  Google Scholar 

  93. Dai Y, Xiao H, Liu J, Yuan Q, Pa Ma, Yang D, Li C, Cheng Z, Hou Z, Yang P, Lin J (2013) In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc 135(50):18920–18929

    Article  CAS  Google Scholar 

  94. Pathak RK, Marrache S, Choi JH, Berding TB, Dhar S (2014) The prodrug platin-A: simultaneous release of cisplatin and aspirin. Angew Chem Int Ed 53(7):1963–1967

    Article  CAS  Google Scholar 

  95. Chin CF, Yap SQ, Li J, Pastorin G, Ang WH (2014) Ratiometric delivery of cisplatin and doxorubicin using tumour-targeting carbon-nanotubes entrapping platinum(IV) prodrugs. Chem Sci 5:2265–2270

    Article  CAS  Google Scholar 

  96. Jennette KW, Lippard SJ, Vassiliades GA, Bauer WR (1974) Metallointercalation reagents. 2-hydroxyethanethiolato(2,2′,2″-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci USA 71(10):3839–3843

    Article  CAS  Google Scholar 

  97. Wang AHJ, Nathans J, van der Marel G, van Boom JH, Rich A (1978) Molecular Structure of a double helical DNA fragment intercalator complex between deoxy CpG and a terpyridine platinum compound. Nature 276(5687):471–474

    Article  CAS  Google Scholar 

  98. Cummings SD (2009) Platinum complexes of terpyridine: interaction and reactivity with biomolecules. Coord Chem Rev 253(9–10):1495–1516

    Article  CAS  Google Scholar 

  99. Liu H-Q, Peng S-M, Che C-M (1995) Interaction of a luminescent platinum(II) Complex of Substituted 2,2′-bipyridine with DNA. spectroscopic and photophysical studies. J Chem Soc Chem Commun 5:509–510

    Article  Google Scholar 

  100. Liu H-Q, Cheung T-C, Che C-M (1996) Cyclometallated platinum(II) complexes as luminescent switches for calf-thymus DNA. Chem Commun 1039–1040

    Google Scholar 

  101. Che C-M, Yang M, Wong K-H, Chan H-L, Lam W (1999) Platinum(II) complexes of dipyridophenazine as metallointercalators for DNA and potent cytotoxic agents against carcinoma cell lines. Chem Eur J 5(11):3350–3356

    Article  CAS  Google Scholar 

  102. Ma D-L, Che C-M (2003) A bifunctional platinum(ii) complex capable of intercalation and hydrogen-bonding interactions with DNA: binding studies and cytotoxicity. Chem Eur J 9(24):6133–6144

    Article  CAS  Google Scholar 

  103. Chan H-L, Ma D-L, Yang M, Che C-M (2003) Bis-intercalative dinuclear platinum(II) 6-phenyl-2,2′-bipyridine complexes exhibit enhanced DNA affinity but similar cytotoxicity compared to the mononuclear unit. J Biol Inorg Chem 8(7):761–769

    Article  CAS  Google Scholar 

  104. Ma D-L, Shum TY-T, Zhang F, Che C-M, Yang M (2005) Water soluble luminescent platinum terpyridine complexes with glycosylated acetylide and arylacetylide ligands: photoluminescent properties and cytotoxicities. Chem Commun 37:4675–4677

    Article  CAS  Google Scholar 

  105. Wang P, Leung C-H, Ma D-L, Sun RW-Y, Yan S-C, Chen Q-S, Che C-M (2011) Specific blocking of CREB/DNA binding by cyclometalated platinum(II) complexes. Angew Chem Int Ed 50(11):2554–2558

    Article  CAS  Google Scholar 

  106. Suryadi J, Bierbach U (2012) DNA metalating-intercalating hybrid agents for the treatment of chemoresistant cancers. Chem Eur J 18(41):12926–12934

    Article  CAS  Google Scholar 

  107. Ding S, Qiao X, Suryadi J, Marrs GS, Kucera GL, Bierbach U (2013) Using fluorescent post-labeling to probe the subcellular localization of DNA-targeted platinum anticancer agents. Angew Chem Int Ed 52(12):3350–3354

    Article  CAS  Google Scholar 

  108. Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR (2007) DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini-Rev Med Chem 7(6):627–648

    Article  CAS  Google Scholar 

  109. Garbutcheon-Singh KB, Leverett P, Myers S, Aldrich-Wright JR (2013) Cytotoxic platinum(II) intercalators that incorporate 1R, 2R-diaminocyclopentane. Dalton Trans 42(4):918–926

    Article  CAS  Google Scholar 

  110. Whan RM, Messerle BA, Hambley TW (2009) Binding of [Pt(1C3)(dien)]2+ to the Duplex DNA Oligonucleotide 5′-d(TGGCCA)-3′: the effect of an appended positive charge on the orientation and location of anthraquinone intercalation. Dalton Trans 6:932–939

    Article  Google Scholar 

  111. Duskova K, Sierra S, Fernández M-J, Gude L, Lorente A (2012) Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants. Bioorg Med Chem 20(24):7112–7118

    Article  CAS  Google Scholar 

  112. Ma D-L, Che C-M, Yan S-C (2009) Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J Am Chem Soc 131(5):1835–1846

    Article  CAS  Google Scholar 

  113. Wu P, Ma D-L, Leung C-H, Yan S-C, Zhu N, Abagyan R, Che C-M (2009) Stabilization of G-Quadruplex DNA with platinum(II) Schiff base complexes: luminescent probe and down-regulation of c-myc oncogene expression. Chem Eur J 15(47):13008–13021

    Article  CAS  Google Scholar 

  114. Wang P, Leung C-H, Ma D-L, Yan S-C, Che C-M (2010) Structure-based design of platinum(II) complexes as c-myc oncogene down-regulators and luminescent probes for G-Quadruplex DNA. Chem Eur J 16(23):6900–6911

    Article  CAS  Google Scholar 

  115. Castor KJ, Liu Z, Fakhoury J, Hancock MA, Mittermaier A, Moitessier N, Sleiman HF (2013) A platinum(II) Phenylphenanthroimidazole with an extended side-chain exhibits slow dissociation from a c-Kit G-Quadruplex Motif. Chem Eur J 19(52):17836–17845

    Article  CAS  Google Scholar 

  116. Wang P, Leung C-H, Ma D-L, Lu W, Che C-M (2010) Organoplatinum(II) complexes with nucleobase motifs as inhibitors of human topoisomerase II catalytic activity. Chem Asian J 5(10):2271–2280

    Article  CAS  Google Scholar 

  117. Liu J, Leung C-H, Chow AL-F, Sun RW-Y, Yan S-C, Che C-M (2011) Cyclometalated platinum(II) complexes as topoisomerase IIα poisons. Chem Commun 47(2):719–721

    Article  CAS  Google Scholar 

  118. Sun RW-Y, Chow AL-F, Li X-H, Yan JJ, Chui SS-Y, Che C-M (2011) Luminescent cyclometalated platinum(II) complexes containing N-heterocyclic carbene ligands with potent in vitro and in vivo anti-cancer properties accumulate in cytoplasmic structures of cancer cells. Chem Sci 2:728–736

    Article  CAS  Google Scholar 

  119. Frezza M, Dou QP, Xiao Y, Samouei H, Rashidi M, Samari F, Hemmateenejad B (2011) In vitro and in vivo antitumor activities and DNA binding mode of five coordinated cyclometalated organoplatinum(II) complexes containing biphosphine ligands. J Med Chem 54(18):6166–6176

    Article  CAS  Google Scholar 

  120. Visbal R, Gimeno MC (2014) N-heterocyclic carbene metal complexes: photoluminescence and applications. Chem Soc Rev 43:3551–3574

    Article  CAS  Google Scholar 

  121. Díez-González S, Marion N, Nolan SP (2009) N-heterocyclic carbenes in late transition metal catalysis. Chem Rev 109(8):3612–3676

    Article  CAS  Google Scholar 

  122. Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2009) The medicinal applications of imidazolium carbene–metal complexes. Chem Rev 109(8):3859–3884

    Article  CAS  Google Scholar 

  123. Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L (2009) SambVca: a web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur J Inorg Chem 13:1759–1766

    Article  CAS  Google Scholar 

  124. Ortiz AM, Gómez-Sal P, Flores JC, de Jesús E (2014) Learning about steric effects in NHC complexes from a 1D silver coordination polymer with Fréchet Dendrons. Organometallics 33(2):600–603

    Article  CAS  Google Scholar 

  125. Benhamou L, Chardon E, Lavigne G, SP Bellemin-Laponnaz, César V (2011) Synthetic routes to N-Heterocyclic carbene precursors. Chem Rev 111(4):2705–2733

    Article  CAS  Google Scholar 

  126. Furstner A, Alcarazo M, Cesar V, Lehmann CW (2006) Convenient, scalable and flexible method for the preparation of imidazolium salts with previously inaccessible substitution patterns. Chem Commun 20:2176–2178

    Article  CAS  Google Scholar 

  127. Queval P, Jahier C, Rouen M, Artur I, Legeay J-C, Falivene L, Toupet L, Crévisy C, Cavallo L, Baslé O, Mauduit M (2013) Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes. Angew Chem Int Ed 52(52):14103–14107

    Article  CAS  Google Scholar 

  128. Kalinowski J, Fattori V, Cocchi M, Williams JAG (2011) Light-emitting devices based on organometallic platinum complexes as emitters. Coord Chem Rev 255(21–22):2401–2425

    Article  CAS  Google Scholar 

  129. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135

    Article  CAS  Google Scholar 

  130. Chow C-F, Chiu BKW, Lam MHW, Wong W-Y (2003) A trinuclear heterobimetallic Ru(II)/Pt(II) complex as a chemodosimeter selective for sulfhydryl-containing amino acids and peptides. J Am Chem Soc 125:7802–7803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Zou .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zou, T. (2016). Introduction. In: Anti-Cancer N-Heterocyclic Carbene Complexes of Gold(III), Gold(I) and Platinum(II). Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0657-9_1

Download citation

Publish with us

Policies and ethics