Advertisement

Outdoor Scene Classification Using Labeled Segments

  • Chen Chen
  • Yuzhuo Ren
  • C.-C. Jay Kuo
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Categorize scene images into classes require semantic understanding of the content in the images. However, traditional approaches start from pixels or local rigid rectangle patches, which are sub-optimal to semantic segments. In this chapter, we will review the significance and problems of semantic segments in previous work and propose a robust semantic segmentation system as the state-of-the-art solution.

Keywords

Big visual data Outdoor scene classification Image segmentation Contour-guided color palette Segmental labeling Coarse semantic segmentation Structured machine learning system 

References

  1. 1.
    Ali, M.M., Fayek, M.B., Hemayed, E.E.: Human-inspired features for natural scene classification. Pattern Recogn. Lett. 34(13), 1525–1530 (2013)CrossRefGoogle Scholar
  2. 2.
    Bolovinou, A., Pratikakis, I., Perantonis, S.: Bag of spatio-visual words for context inference in scene classification. Pattern Recogn. 46(3), 1039–1053 (2013)CrossRefGoogle Scholar
  3. 3.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via plsa. In: Computer Vision-ECCV 2006, pp. 517–530. Springer (2006)Google Scholar
  4. 4.
    Bosch, A., Zisserman, A., Muoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)CrossRefGoogle Scholar
  5. 5.
    Boutell, M.R., Luo, J., Brown, C.M.: Scene parsing using region-based generative models. IEEE Trans. Multimedia 9(1), 136–146 (2007)CrossRefGoogle Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  8. 8.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  9. 9.
    Eigen, D., Fergus, R.: Nonparametric image parsing using adaptive neighbor sets. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2799–2806. IEEE (2012)Google Scholar
  10. 10.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)Google Scholar
  11. 11.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  12. 12.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  13. 13.
    Gokalp, D., Aksoy, S.: Scene classification using bag-of-regions representations. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8. IEEE (2007)Google Scholar
  14. 14.
    Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1–8. IEEE (2009)Google Scholar
  15. 15.
    Gould, S., Zhang, Y.: Patchmatchgraph: building a graph of dense patch correspondences for label transfer. Computer Vision? ECCV 2012, pp. 439–452. Springer (2012)Google Scholar
  16. 16.
    Grossberg, S., Huang, T.R.: Artscene: a neural system for natural scene classification. J. Vision 9(4), 6.1–19 (2009)Google Scholar
  17. 17.
    Gupta, D., Singh, A.K., Kumari, D.: Hybrid feature based natural scene classification using neural network. Int. J. Comput. Appl. 41(16), 48–52 (2012)Google Scholar
  18. 18.
    Han, Y., Liu, G.: A hierarchical gist model embedding multiple biological feasibilities for scene classification. In: ICPR, pp. 3109–3112 (2010)Google Scholar
  19. 19.
    Hao, J., Jie, X.: Improved bags-of-words algorithm for scene recognition. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), vol. 2, pp. V2–279–V2-282. IEEE (2010)Google Scholar
  20. 20.
    Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. ACM Trans. Graph. (TOG) 24(3), 577–584 (2005)CrossRefGoogle Scholar
  21. 21.
    Juneja, M., Vedaldi, A., Jawahar, C., Zisserman, A.: Blocks that shout: distinctive parts for scene classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 923–930. IEEE (2013)Google Scholar
  22. 22.
    Kim, W., Park, J., Kim, C.: A novel method for efficient indoor-outdoor image classification. J. Signal Process. Syst. 61(3), 251–258 (2010)CrossRefGoogle Scholar
  23. 23.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  24. 24.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  25. 25.
    Lempitsky, V., Vedaldi, A., Zisserman, A.: Pylon model for semantic segmentation. In: Advances in Neural Information Processing Systems, pp. 1485–1493 (2011)Google Scholar
  26. 26.
    Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 2036–2043. IEEE (2009)Google Scholar
  27. 27.
    Li, L.J., Su, H., Fei-Fei, L., Xing, E.P.: Object bank: A high-level image representation for scene classification and semantic feature sparsification. In: Advances in Neural Information Processing Systems, pp. 1378–1386 (2010)Google Scholar
  28. 28.
    Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing: Label transfer via dense scene alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1972–1979. IEEE (2009)Google Scholar
  29. 29.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  30. 30.
    Mohan, R.: Deep deconvolutional networks for scene parsing (2014)Google Scholar
  31. 31.
    Niu, Z., Hua, G., Gao, X., Tian, Q.: Context aware topic model for scene recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2743–2750. IEEE (2012)Google Scholar
  32. 32.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  33. 33.
    Perina, A., Cristani, M., Castellani, U., Murino, V., Jojic, N.: A hybrid generative/discriminative classification framework based on free-energy terms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2058–2065. IEEE (2009)Google Scholar
  34. 34.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vision 77(1–3), 157–173 (2008)CrossRefGoogle Scholar
  35. 35.
    Singh, G., Kosecka, J.: Nonparametric scene parsing with adaptive feature relevance and semantic context. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3151–3157. IEEE (2013)Google Scholar
  36. 36.
    Tighe, J., Lazebnik, S.: Superparsing: scalable nonparametric image parsing with superpixels. Computer Vision?ECCV 2010, pp. 352–365. Springer (2010)Google Scholar
  37. 37.
    Tighe, J., Lazebnik, S.: Finding things: Image parsing with regions and per-exemplar detectors. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3001–3008. IEEE (2013)Google Scholar
  38. 38.
    Tung, F., Little, J.J.: Collageparsing: Nonparametric scene parsing by adaptive overlapping windows (2014)Google Scholar
  39. 39.
    Wu, J., Rehg, J.M.: Centrist: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)CrossRefGoogle Scholar
  40. 40.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)Google Scholar
  41. 41.
    Xie, L., Wang, J., Guo, B., Zhang, B., Tian, Q.: Orientational pyramid matching for recognizing indoor scenes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3734–3741. IEEE (2014)Google Scholar
  42. 42.
    Yang, J., Price, B., Cohen, S., Yang, M.H.: Context driven scene parsing with attention to rare classes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3294–3301. IEEE (2014)Google Scholar
  43. 43.
    Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: joint object detection, scene classification and semantic segmentation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 702–709. IEEE (2012)Google Scholar
  44. 44.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)Google Scholar
  45. 45.
    Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Pattern Recogn. 46(1), 424–433 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations