Advertisement

Scene Understanding Datasets

  • Chen Chen
  • Yuzhuo Ren
  • C.-C. Jay Kuo
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Many visual dataset has been made public available for the researcher’s convenience. In this chapter, we will review the most important scene image understanding datasets. The introduction will reflect the key challenges and problems in current scene understanding researches.

Keywords

Dataset Large-scale PASCAL dataset ImageNet LabelMe dataset Fifteen scene category dataset CMU 300 dataset Tiny image dataset SUN dataset PLACE205 dataset 

References

  1. 1.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing: label transfer via dense scene alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1972–1979. IEEE (2009)Google Scholar
  3. 3.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)Google Scholar
  4. 4.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  5. 5.
    Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  6. 6.
    Hoiem, D., Efros, A., Hebert, M., et al.: Geometric context from a single image. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1, pp. 654–661. IEEE (2005)Google Scholar
  7. 7.
    Hoiem, D., Efros, A., Hebert, M., et al.: Closing the loop in scene interpretation. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  8. 8.
    Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRefGoogle Scholar
  9. 9.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Vogel, J., Schiele, B.: Natural scene retrieval based on a semantic modeling step (2004)Google Scholar
  11. 11.
    Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  13. 13.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vision 77(1–3), 157–173 (2008)CrossRefGoogle Scholar
  14. 14.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)Google Scholar
  15. 15.
    Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale visual recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2072–2079. IEEE (2011)Google Scholar
  16. 16.
    Pavlopoulou, C., Yu, S.X.: Indoor-outdoor classification with human accuracies: image or edge gist? In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 41–47. IEEE (2010)Google Scholar
  17. 17.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)Google Scholar
  18. 18.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  19. 19.
    Ojala, T., Pietiknen, M., Mnp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  20. 20.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vision Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  21. 21.
    Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I-488–I-495, IEEE (2004)Google Scholar
  22. 22.
    Hays, J., Efros, A.: Im2gps: estimating geographic information from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  23. 23.
    Zhang, J.K.W.: Video compass. Computer Vision? ECCV 2002, pp. 476–490. Springer (2002)Google Scholar
  24. 24.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2, pp. 416–423. IEEE (2001)Google Scholar
  25. 25.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. Int. J. Comput. Vision 75(1), 151–172 (2007)CrossRefGoogle Scholar
  26. 26.
    Lalonde, J.F., Hoiem, D., Efros, A.A., Rother, C., Winn, J., Criminisi, A.: Photo clip art. ACM Trans. Graph. 26(3), 3 (2007)CrossRefGoogle Scholar
  27. 27.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations