Skip to main content

Energy Efficiency of Metallic Powder Bed Additive Manufacturing Processes

  • Chapter
  • First Online:

Abstract

Metallic powder bed additive manufacturing processes have evolved a lot over the last few years. A number of alternative processes have been developed and are classified in the present chapter. In order for these processes to deliver metallic parts, a large amount of energy is delivered to the powder that is used as a raw material. The implications to the sustainability are discussed and sustainability key performance indicators are presented. This chapter presents a comprehensive review of the relevant literature of the studies presented on the energy efficiency of metallic powder bed additive manufacturing processes and the key challenges for improving it. Furthermore, modelling of the process with finite element simulation is discussed for the estimation of the energy efficiency and the optimisation of the process under this prism. Because the preheating of the raw material is the key energy consumer, the alternative methods are discussed and compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kruth J-P, Leu MC, Nakagawa T (1998) Progress in Additive manufacturing and rapid prototyping. CIRP Ann Manufact Technol 47(2):525–540

    Article  Google Scholar 

  2. Wohlers (2013) Wohlers Report: additive manufacturing and 3D printing state of the industry. Wohlers Associates, USA

    Google Scholar 

  3. RAEng (2013) Additive manufacturing: opportunities and constraints. Royal Academy of Engineering, UK

    Google Scholar 

  4. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52(2):589–609

    Article  Google Scholar 

  5. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52(2):589–609

    Article  Google Scholar 

  6. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468

    Google Scholar 

  7. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Article  CAS  Google Scholar 

  8. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 448:300–307

    Article  Google Scholar 

  9. Kruth JP, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759

    Article  Google Scholar 

  10. Gu D, Wang H, Zhang G (2014) Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder. Metall Mater Trans A 45(1):464–476

    Article  CAS  Google Scholar 

  11. Schoinochoritis B, Chantzis D, Salonitis K (2015) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Instit Mech Eng Part B J Eng Manuf. doi: 10.1177/0954405414567522

    Google Scholar 

  12. IEA (2007) Tracking industrial energy efficiency and CO2 emission

    Google Scholar 

  13. Brundtland GH (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  14. Mani M, Lyons KW, Gupta SK (2014) Sustainability characterization for additive manufacturing. J Res National Inst Stand Technol 119:419–428

    Article  Google Scholar 

  15. Ellen McArthour Foundation (2015) Accessible at http://www.ellenmacarthurfoundation.org/. Accessed on 20 Nov 2015

  16. Salonitis K, Stavropoulos P (2013) On the integration of the CAx systems towards sustainable production. Procedia CIRP, vol 9, pp 115–120. doi:10.1016/j.procir.2013.06.178

    Google Scholar 

  17. Gebler M, SchootUiterkamp AJM, Visser C (2014) A global sustainability perspective on 3D printing technologies. Energy Policy 74(C):158–167

    Google Scholar 

  18. Despeisse M, Ford S (2015) The role of additive manufacturing in improving resource efficiency and sustainability. In: Proceedings of the APMS 2015 international conference

    Google Scholar 

  19. Chen D, Heyer S, Ibbotson S, Salonitis K, GarðarSteingrímsson J, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Cleaner Prod 107:615–625

    Article  Google Scholar 

  20. Baumers M, Tuck C, Wildman R, Ashcroft I, Rosamond E, Hague R (2012) Transparency built-in energy consumption and cost estimation for additive manufacturing. J Ind Ecol 17(3):418–431

    Article  Google Scholar 

  21. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9):1147–1155

    Article  Google Scholar 

  22. Sreenivasan R, Goel A, Bourell DL (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90

    Article  CAS  Google Scholar 

  23. Serres N, Tidu D, Sankare S, Hlawka F (2011) Environmental comparison of MESO-CLAD process and conventional machining implementing life cycle assessment. J Cleaner Prod 19:1117–1124

    Article  CAS  Google Scholar 

  24. Seuring S (2004) Integrated chain management and supply chain management comparative analysis and illustrative cases. J Cleaner Prod 12:1059–1071

    Article  Google Scholar 

  25. Kleindorfer PR, Singhal K, Van Wassenhove LN (2005) Sustainable operations management. Prod Oper Manage 14(4):482–492

    Article  Google Scholar 

  26. Linton JD, Klassen R, Jayaraman V (2007) Sustainable supply chains: an introduction. J Oper Manage 25:1075–1082

    Article  Google Scholar 

  27. Bell S, Morse S (2008) Sustainability Indicators—measuring the immeasurable? ISBN-13: 978-1-84497-299-6, published by Earthscan, UK, p 223

    Google Scholar 

  28. Stiglitz and Sen—Fitoussi report (2009)—Report by the commission on the measurement of economic performance and social progress (French Government Initiative)

    Google Scholar 

  29. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203

    Article  Google Scholar 

  30. Chryssolouris G (2006) Manuf Syst Theory Pract, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  31. Salonitis K, Ball P (2013) Energy efficient manufacturing from machine tools to manufacturing systems. Procedia CIRP 7:634–639

    Article  Google Scholar 

  32. Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO (2011) Integrating energy efficiency performance in production management—gap analysis between industrial needs and scientific literature. J Cleaner Prod 19:667–679

    Google Scholar 

  33. Roberts IA, Wang CJ, Esterlein R et al (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tool Manuf 49:916–923

    Article  Google Scholar 

  34. Zhang J, Li D, Li J et al (2011) Numerical simulation of temperature field in selective laser sintering. In: Li D, Liu Y, Chen Y (eds) Computer and computing technologies in agriculture IV, 1st edn. Springer, New York, pp 474–479

    Chapter  Google Scholar 

  35. Bai PK, Cheng J, Liu B et al (2006) Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder. T Nonferr Metal Soc 16:603–607

    Article  Google Scholar 

  36. Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of numerical modelling of the selective laser melting. Key Eng Mat 504–506:1067–1072

    Article  Google Scholar 

  37. Zhang DQ, Cai QZ, Liu JH et al (2010) Select laser melting of W-Ni–Fe powders: simulation and experimental study. Int J Adv Manuf Technol 51:649–658

    Article  Google Scholar 

  38. Song B, Dong S, Liao H et al (2012) Process parameter selection for selective laser melting of Ti6Al4 V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61(9–12):967–974

    Article  Google Scholar 

  39. Yin J, Zhu H, Ke L et al (2012) Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci 53(1):333–339

    Article  CAS  Google Scholar 

  40. Hussein A, Hao L, Yan C et al (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647

    Article  CAS  Google Scholar 

  41. Patil RB, Yadava V (2007) Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering. Int J Mach Tool Manuf 47:1069–1080

    Article  Google Scholar 

  42. Shen N, Chou K (2012) Thermal modeling of electron beam additive manufacturing process—powder sintering effects. In: ASME international manufacturing science and engineering conference, Notre Dame, USA, 4–8 June 2012, pp 287–295

    Google Scholar 

  43. Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D Finite element analysis in the selective laser melting process. Int J Simul Model 10(3):113–121

    Article  Google Scholar 

  44. Matsumoto M, Shiomi M, Osakada K et al (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tool Manuf 42(1):61–67

    Article  Google Scholar 

  45. Salonitis K, D’Alvice L, Schoinochoritis B, Chantzis D (2015) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7989-y

    Google Scholar 

  46. Schilp J, Seidel C, Krauss H, et al. (2014) Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng 6

    Google Scholar 

  47. Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34(9–10):898–903

    Article  Google Scholar 

  48. Mercelis P, Kruth J (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265

    Article  Google Scholar 

  49. Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214(11):2522–2528

    Article  Google Scholar 

  50. Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21(8):085011

    Google Scholar 

  51. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987

    Article  Google Scholar 

  52. Scharowsky T, Bauereiß A, Singer RF, et al. Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting. In: National science foundation solid freeform fabrication symposium, Austin, USA, 6–8 August 2012

    Google Scholar 

  53. Chen T, Zhang Y (2004) Numerical simulation of two dimensional melting and resolidification of a two-component metal powder layer in selective laser sintering process. Numer Heat Tr A-Appl 46(7):633–649

    Article  CAS  Google Scholar 

  54. Dai D, Gu D (2014) Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Des 55:482–491

    Article  CAS  Google Scholar 

  55. Matsumoto M, Shiomi M, Osakada K et al (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tool Manuf u 42(1):61–67

    Article  Google Scholar 

  56. Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of numerical modelling of the selective laser melting. Key Eng Mat 504–506:1067–1072

    Article  Google Scholar 

  57. Bai PK, Cheng J, Liu B et al (2006) Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder. T Nonferr Metal Soc 16:603–607

    Article  Google Scholar 

  58. Childs THC, Hauser C, Taylor CM, et al. (2000) Simulation and experimental verification of crystalline polymer and direct metal Selective Laser Sintering. In: National science foundation solid freeform fabrication symposium, Austin, USA, 7–9 August 2000

    Google Scholar 

  59. Kolossov S, Boillat E, Glardon R et al (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tool Manuf 44:117–123

    Article  Google Scholar 

  60. Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D Finite element analysis in the selective laser melting process. IJSIMM 10(3):113–121

    Google Scholar 

  61. Riedlbauer D, Steinmann P, Mergheim J (2014) Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput Mech 54(1):109–122

    Article  Google Scholar 

  62. Denlinger ER, Heigel JC, Michaleris P (2014) Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4 V. Proc Inst Mech Eng Part B J Eng Manuf. doi: 10.1177/0954405414539494

    Google Scholar 

  63. Liu FR, Zhang Q, Zhou WP et al (2012) Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J Mater Process Tech 212(10):2058–2065

    Article  Google Scholar 

  64. Schilp J, Seidel C, Krauss H, et al. (2014) Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng 6

    Google Scholar 

  65. Duflou JR, Sutherland JW, Dornfield S, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61:587–609

    Google Scholar 

  66. Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann Manuf Technol 59:21–24

    Article  Google Scholar 

  67. Behrendt T, Zeina A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61:43–46

    Article  Google Scholar 

  68. Oda Y, Mori M, Ogawa K, Nishida S, Fujishima M, Kawamura T (2012) Study of optimal cutting condition for energy efficiency improvement in ball end milling with tool-workpiece inclination. CIRP Ann Manuf Technol 61:119–122

    Article  Google Scholar 

  69. Hao L, Raymond D, Strano G, Dadbakhsh S (2010) Enhancing the sustainability of additive manufacturing. In: ICRM2010-Green Manufacturing, Ningbo, China, pp 390–395

    Google Scholar 

  70. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60:37–40

    Google Scholar 

  71. Weinert N, Chiotellis S, Seliger G (2011) Methodology for planning and operating energy-efficient production systems. CIRP Ann Manuf Technol 60:41–44

    Article  Google Scholar 

  72. Dahmus J, Gutowski T (2004) An environmental analysis of machining. In: Proceedings of ASME international mechanical engineering congress and R&D exposition, pp 13–19

    Google Scholar 

  73. Salonitis Κ (2012) Efficient grinding processes: an energy efficiency point of view. In: Proceedings of the 10th international conference on manufacturing research (ICMR 2012), pp 541–546

    Google Scholar 

  74. Salonitis K (2015) Energy efficiency assessment of grinding strategy. Int J Energy Sect Manage 9(1):20–37

    Article  Google Scholar 

  75. Kempen K, Thijs L, Vrancken B, Van Humbeeck J, Kruth JP (2013) Producing crack-free, high density M2 Hss parts by selective laser melting: pre-heating the baseplate. In: Proceedings of the 24th international solid freeform fabrication symposium. Laboratory for freeform fabrication, Austin, TX, pp 131–139

    Google Scholar 

  76. Sreenivasan R, Goel A, Bourell DL (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90. doi:10.1016/j.phpro.2010.08.124

    Article  CAS  Google Scholar 

  77. Reinhardt T, Witt G (2012) Experimental analysis of the laser-sintering process from an energetic point of view. Ann. DAAAM 2012 Proc. 23rd Int. DAAAM Symp 23:405–408

    Google Scholar 

  78. Baumers M, Tuck C, Bourell DL, Sreenivasan R, Hague R (2011) Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process. Proc Inst Mech Eng Part B J Eng Manuf 225:2228–2239

    Article  Google Scholar 

  79. Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25. doi:10.1016/j.procir.2014.06.030

    Article  Google Scholar 

  80. Morrow WR, Qi H, Kim I, Mazumder J, Skerlos SJ (2007) Environmental aspects of laser-based and conventional tool and die manufacturing. J Cleaner Prod 15:932–943

    Article  Google Scholar 

  81. Paul R, Anand S (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31:429–437

    Article  Google Scholar 

  82. Verma A, Rai R (2013) Energy efficient modeling and optimization of additive manufacturing processes. In: Proceedings of the 24th international solid freeform fabrication symposium. Laboratory for Freeform Fabrication, Austin, TX, pp 231–241

    Google Scholar 

  83. Strano G, Hao L, Everson RM, Evans KE (2011) Multi-objective optimization of selective laser sintering processes for surface quality and energy saving. Proc Inst Mech Eng Part B J Eng Manuf 225:1673–1682

    Article  Google Scholar 

  84. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In 13th CIRP international conference on life cycle engineering

    Google Scholar 

  85. Renaldi R, Dewulf W, Kruth J, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20:459–470. doi:10.1108/RPJ-02-2013-0018

    Article  Google Scholar 

  86. Papadakis L, Schoinochoritis B, Chantzis D, Doukas C, Salonitis K (2015) On the energy efficiency of pre-heating methods in SLM/SLS processes. Working paper to be submitted for publication

    Google Scholar 

  87. Salonitis K (2015) Grind-hardening process. SpringerBrief, New York. doi: 10.1007/978-3-319-19372-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Salonitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Salonitis, K. (2016). Energy Efficiency of Metallic Powder Bed Additive Manufacturing Processes. In: Muthu, S., Savalani, M. (eds) Handbook of Sustainability in Additive Manufacturing. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0606-7_1

Download citation

Publish with us

Policies and ethics