Skip to main content

Predictors and Pathogenesis of Type 1 Diabetes

  • Chapter
  • First Online:
Therapeutic Perspectives in Type-1 Diabetes

Abstract

Autoimmune processes in general take many years before their clinical manifestation as a disease becomes apparent and T1D is no exception, sometimes taking up to a decade, or more for clinical presentation. This asymptomatic period offers a great window of opportunity for the prediction and prevention of full-blown disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akashi T, Nagafuchi S et al (1997) Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-diabetic mice. Int Immunol 9:1159–1164

    Article  Google Scholar 

  • Atkinson MA, Bluestone JA et al (2011) How does Type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 60(5):1370–1379

    Article  Google Scholar 

  • Baekkeskov S, Aanstoot HJ et al (1990) Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347(6289):151–156

    Article  Google Scholar 

  • Borges CR, Rehder DS et al (2010) Full-length characterization of proteins in human populations. Clin Chem 56(2):202–211

    Article  Google Scholar 

  • Carey C, Purohit S et al (2010) Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using ‘omic’ technologies. Expert Opin Med Diagn 4(5):397–410

    Article  Google Scholar 

  • Cassiday L (2008) Candidate biomarkers for type 1 diabetes. J Proteome Res 7(2):482

    Article  Google Scholar 

  • Eisenbarth G (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314(21):1360–1368

    Article  Google Scholar 

  • Haskins K, McDuffie M (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249(4975):1433–1436

    Article  Google Scholar 

  • Hawa MI, Fava D et al (2000) Antibodies to IA-2 and GAD65 in type 1 and type 2 diabetes: isotype restriction and polyclonality. Diabetes Care 23(2):228–233

    Article  Google Scholar 

  • Lennon GP, Bettini M et al (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 31(4):643–653

    Article  Google Scholar 

  • Leslie D, Lipsky P et al (2001) Autoantibodies as predictors of disease. J Clin Invest 108(10):1417–1422

    Article  Google Scholar 

  • Lyons PA, Wicker LS (1999) Localising quantitative trait loci in the NOD mouse model of type 1 diabetes. Curr Dir Autoimmun 1:208–225

    Article  Google Scholar 

  • Moser M (2003) Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity 19:5–8

    Article  Google Scholar 

  • Nakayama M, Abiru N et al (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435(7039):220–223

    Article  Google Scholar 

  • Notkins AL, Lernmark A (2001) Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 108(9):1247–1252

    Article  Google Scholar 

  • Ounissi-Benkalha H, Polychronakos C (2008) The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 14(6):268–275

    Article  Google Scholar 

  • Palmer JP, Asplin CM et al (1983) Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222(4630):1337–1339

    Article  Google Scholar 

  • Rabin DU, Pleasic SM et al (1994) Islet cell antigen 512 is a diabetes-specific islet autoantigen related to protein tyrosine phosphatases. J Immunol 152(6):3183–3188

    Google Scholar 

  • Rubio-Cabezas O, Minton JAL et al (2009) Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 32(1):111–116

    Article  Google Scholar 

  • Ryden A, Stechova K et al (2009) Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes. Diabetes Metab Res Rev 25(4):335–343

    Article  Google Scholar 

  • Sebzda E, Mariathasan S et al (1999) Selection of the T cell repertoire. Annu Rev Immunol 17(1):829–874

    Article  Google Scholar 

  • Srikanta S, Ganda OP et al (1985) First-degree relatives of patients with type I diabetes mellitus. islet-cell antibodies and abnormal insulin secretion. N Eng J Med 313(8):461–464

    Google Scholar 

  • Turley S, Poirot L et al (2003) Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198(10):1527–1537

    Article  Google Scholar 

  • Turner R, Stratton I et al (1997) UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. The Lancet 350(9087):1288–1293

    Article  Google Scholar 

  • Verge CF, Stenger D et al (1998) Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: combinatorial islet autoantibody workshop. Diabetes 47(12):1857–1866

    Article  Google Scholar 

  • Verge CF, Gianani R et al (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45(7):926–933

    Article  Google Scholar 

  • Wasserfall CH, Atkinson MA (2006) Autoantibody markers for the diagnosis and prediction of type 1 diabetes. Autoimmun Rev 5(6):424–428

    Article  Google Scholar 

  • Wenzlau JM, Juhl K et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104(43):17040–17045

    Article  Google Scholar 

  • Wong FS, Visintin I et al (1998) The role of lymphocyte subsets in accelerated diabetes in nonobese diabetic-rat insulin promoter–B7-1 (NOD-RIP-B7-1) mice. J Exp Med 187(12):1985–1993

    Article  Google Scholar 

  • Wong FS, Visintin I et al (1996) CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med 183(1):67–76

    Article  Google Scholar 

  • Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32(4):468–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harendra S. Parekh or Giorgia Pastorin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Singh, P. et al. (2016). Predictors and Pathogenesis of Type 1 Diabetes. In: Therapeutic Perspectives in Type-1 Diabetes. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0602-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0602-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0601-2

  • Online ISBN: 978-981-10-0602-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics