Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 55))

  • 1153 Accesses

Abstract

De novo Assembly is a method in which the genome is constructed using the reads without using reference sequence. It is the only way to construct new genomes. This method is also used when reference genome is available because the construction is unbiased. The genome assembly involves large amounts of data and string comparison and hence takes significant time to execute. In this chapter, we show achieved speedups over software implementations using FPGA-based accelerators .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, X., Wang, J., Aluru, S., Yang, S.P., Hillier, L.: PCAP: a whole-genome assembly program. Genome Res. 13(9), 2164–2170 (2003)

    Article  Google Scholar 

  2. Wu, X.L., Heo, Y., El Hajj, I., Hwu, W.M., Chen, D., Ma, J.: TIGER: tiled iterative genome assembler. BMC Bioinf. 13 (2012)

    Google Scholar 

  3. Hernandez, D., François, P., Farinelli, L., Østerås, M., Schrenzel, J.: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18 (2008)

    Google Scholar 

  4. Miller, J.R., Delcher, A.L., Koren, S., Venter, E., Walenz, B.P., Brownley, A., Johnson, J., Li, K., Mobarry, C., Sutton, G.: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24(24), 2818–2824 (2008)

    Article  Google Scholar 

  5. Liu, Y., Schmidt, B., Maskell, D.: Parallelized short read assembly of large genomes using de bruijn graphs. BMC Bioinf. 12(1), 354–363 (2011)

    Article  Google Scholar 

  6. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

    Article  Google Scholar 

  7. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z., Rasko, D.A., McCombie, W.R., Jarvis, E.D., ED., J., Phillippy, A.M.: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30(7), 693–700

    Google Scholar 

  9. Salmela, L., Schröder, J.: Correcting errors in short reads by multiple alignments. Bioinformatics 27(11), 1455–1461 (2011)

    Article  Google Scholar 

  10. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991

    Google Scholar 

  11. Tang, W., Wang, W., Duan, B., Zhang, C., Tan, G., Zhang, P., Sun, N.: Accelerating millions of short reads mapping on a heterogeneous architecture with FPGA accelerator. In: Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 184–187 (2012)

    Google Scholar 

  12. Chen, Y., Souaiaia, T., Chen, T.: PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics 25(19), 2514–2521 (2009)

    Article  Google Scholar 

  13. Olson, C., Kim, M., Clauson, C., Kogon, B., Ebeling, C., Hauck, S., Ruzzo, W.: Hardware acceleration of short read mapping. In: IEEE Symposium on FCCM, pp. 161–168 (2012)

    Google Scholar 

  14. Homer, N., Merriman, B., Nelson, S.F.: BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4 (2009)

    Google Scholar 

  15. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10 (2009)

    Google Scholar 

  16. Fernandez, E., Najjar, W., Harris, E., Lonardi, S.: Exploration of short reads genome mapping in hardware. In: International Conference on FPL, pp. 360–363 (2010)

    Google Scholar 

  17. Knodel, O., Preusser, T., Spallek, R.: Next-generation massively parallel short-read mapping on FPGAs. In: IEEE International Conference on ASAP, pp. 195–201 (2011)

    Google Scholar 

  18. Convey Computer: Convey Graph Constructor. http://www.conveycomputer.com (2015)

  19. Lander, E.S., Waterman, M.S.: Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2(3), 231–239 (1988)

    Article  Google Scholar 

  20. Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., Shen, B.: A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS ONE 6(3) (2011)

    Google Scholar 

  21. Peterlongo, P., Chikhi, R.: Mapsembler, targeted and micro assembly of large NGS datasets on a desktop computer. BMC Bioinf. 13(1) (2012)

    Google Scholar 

  22. Alpha-Data: Alpha-Data FPGA Boards. http://www.alpha-data.com/ (2015)

  23. Varma, B.S.C. Paul, K., Balakrishnan, M., Lavenier, D.: FAssem: FPGA based acceleration of de novo genome assembly. In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 173–176 (2013)

    Google Scholar 

  24. Xilinx: Xilinx FPGAs, ISE. http://www.xilinx.com (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sharat Chandra Varma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Varma, B.S.C., Paul, K., Balakrishnan, M. (2016). FPGA-Based Acceleration of De Novo Genome Assembly. In: Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications. Springer Series in Advanced Microelectronics, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-10-0591-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0591-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0589-3

  • Online ISBN: 978-981-10-0591-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics