Skip to main content

Metal Magnetic Memory Testing

  • Chapter
  • First Online:
Book cover New Technologies in Electromagnetic Non-destructive Testing

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

Abstract

The mechanical stress is directly related to the spontaneous magnetization and the residual magnetic field of the ferromagnetic material. Residual stresses and stress concentration in the component of structures impinge on the mechanical properties, erosion-resistance, dimensional precision, and cause fatigue failure. They also impact magnetic characteristics of ferromagnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunaev, F.N.: Magnetic texture of ferromagnets subjected to external stresses. Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya. 25(12), 1502 (1961)

    Google Scholar 

  2. Langman, R.: The effect of stress on the magnetization of mild steel at moderate field strengths. IEEE Trans. Magn. 21(4), 1314 (1985)

    Article  ADS  Google Scholar 

  3. Schneider, C.S., Cannell, P.Y., Watts, K.T.: Magnetoelasticity for large stresses. IEEE Trans. Magn. 28(5), 2626 (1992)

    Article  ADS  Google Scholar 

  4. Sablik, M.J., Riley, L.A., Burkhardt, G.L., Kwun, H., Cannell, P.Y., Watts, K.T., Langman, R.A.: Micromagnetic model for biaxial stress effects on magnetic properties. J. Magn. Magn. Mater. 132, 131 (1994)

    Article  ADS  Google Scholar 

  5. Hauser, H.: Energetic model of ferromagnetic hysteresis 2: magnetization calculations of (110)[001] FeSi sheets by statistic domain behavior. J. Appl. Phys. 77(6), 2625 (1995)

    Google Scholar 

  6. Sablik, M.J.: A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel. IEEE Trans. Magn. 33(5), 3958 (1997)

    Article  ADS  Google Scholar 

  7. Makar, J.M., Tanner, B.K.: The effect of stresses approaching and exceeding the yield point on the magnetic properties of high strength pearlitic steels. NDT & E Int. 31(2), 117 (1998)

    Article  Google Scholar 

  8. Mao, W., Atherton, D.L.: Effect of compressive stress on the reversible and irreversible differential magnetic susceptibility of a steel cube. J. Magn. Magn. Mater. 214, 69 (2000)

    Article  ADS  Google Scholar 

  9. Makar, J.M., Tanner, B.K.: The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J. Magn. Magn. Mater. 222, 291 (2000)

    Article  ADS  Google Scholar 

  10. Chen, Y.H., Jiles, D.C.: The magnetomechanical effect under torsional stress in a cobalt ferrite composite. IEEE Trans. Magn. 37(4), 3069 (2001)

    Article  ADS  Google Scholar 

  11. Hauser, H.: Energetic model of ferromagnetic hysteresis. J. Appl. Phys. 77(5), 2584 (1994)

    Article  ADS  Google Scholar 

  12. Zhong, W.: The demagnetization for a rotor of 23 MW gas turbine. J. Test. Eval. 3, 25 (1984)

    ADS  Google Scholar 

  13. Doubov, A.: Proceedings of ChSNDT 7th conference on NDT and international research symposium, p 181. Shantou, China, Oct 1999

    Google Scholar 

  14. Garshelis, I.J.: Conditions for stress induced bulk moments. J. Appl. Phys. 50(3), 1680 (1979)

    Article  ADS  Google Scholar 

  15. Luming, L., Songling, H., Xiaofeng, W., et al.: Magnetic field abnormality caused by welding residual stress. J. Magn. Magn. Mater. 261(3), 385–391 (2003)

    Article  ADS  Google Scholar 

  16. Luming, L., Songling, H., Xiaofeng, W., et al.: Stress induced magnetic field abnormality. Trans. Nonferrous Met. Soc. China 13(1), 6–9 (2003)

    Google Scholar 

  17. Huang, S.L., Li, L.M., Shi, K.R., et al.: Magnetic field properties caused by stress concentration. J. Cent. S. Univ. Technol. 11(1), 23–26 (2004)

    Article  Google Scholar 

  18. Li, L.M., Huang, S.L., Wang, L.F., et al.: Research on magnetic testing method of stress distribution. Trans. Nonferrous Met. Soc. China 12(3), 388–391 (2002)

    Google Scholar 

  19. Huang, S.L., Li, L.M., Wang, X.F.: Magnetic evaluation method for stress annealing of ferromagnetic materials. Mater. Technol. 20(1), 5–6 (2005)

    MathSciNet  Google Scholar 

  20. Huang, S.L., Li, L.M., Wang, X.F., et al.: Novel NDT test method for stress concentrations and fatigue cracks. Mater. Technol. 18(3), 149–150 (2003)

    Google Scholar 

  21. Leng, J., Liu, Y., Zhou, G., et al.: Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT & E Int. 55(4), 42–46 (2013)

    Article  Google Scholar 

  22. Dubov, A.A.: Detection of metallurgical and production defects in engineering components using metal magnetic memory. Metallurgist 59(5), 164–167 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songling Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Tsinghua University Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Huang, S., Wang, S. (2016). Metal Magnetic Memory Testing. In: New Technologies in Electromagnetic Non-destructive Testing. Springer Series in Measurement Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0578-7_5

Download citation

Publish with us

Policies and ethics