Skip to main content

The Electromagnetic Ultrasonic Guided Wave Testing

  • Chapter
  • First Online:
New Technologies in Electromagnetic Non-destructive Testing

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 1314 Accesses

Abstract

As an important branch of the nondestructive testing field, ultrasonic testing is widely used in the steel, electric power, petroleum, transportation, and medical and other industries. In the process of ultrasonic testing, the ultrasonic transducer is the core component of excitation and reception of ultrasonic waves, mainly including the piezoelectric ultrasonic transducer and the electromagnetic acoustic transducer (EMAT). Compared with the piezoelectric ultrasonic transducer, EMAT has many advantages, such as being non-contact, without the need for the coupling medium, and easy to produce the shear horizontal (SH) wave. In particular, it can be applied under a high-temperature environment, or there is an isolation layer, and other special situations [1]. It is of great value and a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masahiko, H., Hirotsugu, O.: EMATs for science and industry non-contacting ultrasonic measurements. Kluwer Academic publishers, Boston (2003)

    Google Scholar 

  2. Randall, R.H., Rose, F.C., Zener, C.: Intercrystalline thermal currents as a source of internal friction. Phys. Rev. 56, 343 (1939)

    Article  ADS  Google Scholar 

  3. Akseno, S.I., Vkin, B.P., Vladimirskii, K.V.: The excitation of ultrasonic vibrations by ponderomotive forces. J. Exper. Theoret. Phys. USSR 128, p. 762 (1955)

    Google Scholar 

  4. Alers, G., Mclauchlan, D., Maiseri, H., et al.: Development of a prototype EMAT system for inspection of rails. United States Federal Railroad Administration, Report. (FRA/RD-80/45): 71 (1980)

    Google Scholar 

  5. Thompson, R.B., Elsley, R.K.: A prototype EMAT system for inspection of steam generator tubing. Electric Power Research Institute (Report) EPRI NP (1983)

    Google Scholar 

  6. Maxfield, B.W., Kuramoto, A., Hulbert, J.K.: Using EMATs for High Temperature Ultrasonics. Int Committee on Nondestructive Testing, Columbus (1985)

    Google Scholar 

  7. Alers, G.A.: EMATS as Noncontact Transducers for Tube Inspection. Cincinnati, OH, USA. Iron & Steel Soc of AIME, Warrendale (1991)

    Google Scholar 

  8. Hirao, M., Ogi, H., Fukuoka, H.: Advanced ultrasonic method for measuring rail axial stresses with electromagnetic acoustic transducer. Res. Nondestr. Eval. 5(3), 211–223 (1994)

    Article  Google Scholar 

  9. Fujisawa, K., Murayama, R., Yonehara, S., et al.: Measuring equipment of residual stress in railroad wheel by EMAT. NDT E Int. 27(2), 113 (1994)

    Article  Google Scholar 

  10. Gori, M., Giamboni, S., D’Alessio, E., et al.: Guided waves by EMAT transducers for rapid defect location on heat exchanger and boiler tubes. Ultrason. 34(2–5), 311–314 (1996)

    Google Scholar 

  11. Sebko, V.P., Suchkov, G.M., Malakhov, A.V.: Ultrasonic testing of rail heads with EMA (electromagnetic-acoustic) method. Defektoskopiya 7, 17–25 (2004)

    Google Scholar 

  12. Ho, K.S., Billson, D.R., Hutchins, D.A.: Inspection of drinks cans use non-contact electromagnetic acoustic transducers. J. Food Eng. 80(2), 431–444 (2007)

    Article  Google Scholar 

  13. Vasiljevic, M., Kundu, T., Grill, W., et al.: Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals. J. Acoust. Soc. Am. 123(5), 2591–2597 (2008)

    Article  ADS  Google Scholar 

  14. Maxfield, B.W., Kuramoto, A., Hulbert, J.K.: Evaluating EMAT designs for selected applications. Mater. Eval. 45(10), 1166–1183 (1987)

    Google Scholar 

  15. Komarov, V.A., Pakhomov, P.A.: A quasi-steady electromagnetic acoustic transducer of null modes of lamb waves in plates (generation of waves). Russ. J. Nondestr. Test. 28(7), 392–399 (1992)

    Google Scholar 

  16. He, F., Rokhlin, S.I., Adler, L.: Application of SH and Lamb wave EMAT’s for evaluation of adhesive joint in thin plate. Rev. Prog. Quant. Nondestr. Eval. 7B, 911–918 (1988)

    Article  Google Scholar 

  17. Yamasaki, T., Hirao, M., Fukuoka, H.: Generation of S0 mode lamb wave using electromagnetic acoustic transducers. Nippon Kikai Gakkai Ronbunshu, Hen Trans. Jan. Soc. Mech. Eng. Part A 61(585), 1136–1142 (1995)

    Google Scholar 

  18. Murayama, R.: Driving mechanism on magnetostrictive type electromagnetic acoustic transducer for symmetrical vertical-mode Lamb wave and for shear horizontal-mode plate wave. Ultrasonics 34(7), 729–736 (1996)

    Article  Google Scholar 

  19. Voltmer, F.W., White, R.M., Turner, C.W.: Magnetostrictive generation of surface elastic waves. Appl. Phys. Lett. 15(5), 153–154 (1969)

    Article  ADS  Google Scholar 

  20. Sethares, J.C., Frost, H.M., Szabo, T.L.: Fields of flat conductor electromagnetic surface acoustic wave transducers. IEEE Trans. Son. Ultrason. SU-24(2), 88–94 (1977)

    Article  ADS  Google Scholar 

  21. Edwards, R.S., Dixon, S., Jian, X.: Enhancement of the Rayleigh wave signal at surface defects. J. Phys. D Appl. Phys. 37(16), 2291–2297 (2004)

    Article  ADS  Google Scholar 

  22. Thompson, R.B.: New configurations for the electromagnetic generation sh waves in ferromagnetic materials. In: Proceedings of the Symposium on Ultrasonics, pp. 374–378 (1978)

    Google Scholar 

  23. Igarashi, B., Alers, G.A.: Excitation of bulk shear waves in steel by magnetostrictive coupling. In: Proceedings of the IEEE Ultrasonics Symposium, vol. 1, 893–896 (1998)

    Google Scholar 

  24. Hobbis, A., Aruleswaran, A.: Non-contact thickness gauging of aluminium strip using EMAT technology. Nondestr. Test. Eval. 20(4), 211–220 (2005)

    Article  Google Scholar 

  25. Vasile, C.F., Thompson, R.B.: Periodic magnet non-contact electromagnetic acoustic wave transducer-theory and application. In: Proceedings of the Symposium on Ultrasonics, pp. 84–88 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songling Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Tsinghua University Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Huang, S., Wang, S. (2016). The Electromagnetic Ultrasonic Guided Wave Testing. In: New Technologies in Electromagnetic Non-destructive Testing. Springer Series in Measurement Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0578-7_1

Download citation

Publish with us

Policies and ethics