Skip to main content

Short Latency Bias in Latency Matrix Completion

  • Conference paper
  • First Online:
Frontier Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 375))

  • 1866 Accesses

Abstract

For latency-sensitive applications, a key issue is how to estimate the latencies between any couple of nodes. Latency Matrix Completion method provides a simple but efficient way to estimate the latencies instead of measure them directly. In this paper, we make comparative studies on several Internet latency data sets, and report an easy overlooked shortcoming exists in Latency Matrix Completion. For short latencies, their relative estimation errors are much higher than those of long latencies. In this paper, we propose a brief model to analyze why this bias exists. We believe that the loss function which used in the optimizing process is a possible reason for this phenomenon. How to remove the short latency bias should cause our consideration in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nazanin M, Reza R, Ivica R et al (2014) ISP-friendly live P2P streaming. IEEE/ACM Trans Netw 22(1):244–256

    Article  Google Scholar 

  2. Armitage G, Heyde A (2012) REED: optimizing first person shooter game server discovery using network coordinates. ACM Trans Multimedia Comput Commun Appl (TOMCCAP) 8(2):20

    Google Scholar 

  3. Jiang JR, Wu JW, Fan JY et al (2014) Immersive voice communication for massively multiplayer online games. Peer-to-Peer Netw Appl, (Already online but not assigned to an issue yet)

    Google Scholar 

  4. Klein A, Ishikawa F, Honiden S (2013) Towards network-aware service composition in the cloud. In: Proceedings of the 21st international conference on world wide web, Lyon, France, pp 959–968

    Google Scholar 

  5. Sherr M, Mao A, Marczak WR et al (2010) A3: an extensible platform for application-aware anonymity. In: Proceedings of the network and distributed security symposium, San Diego, USA

    Google Scholar 

  6. Wacek C, Tan H, Bauer K et al (2013) An empirical evaluation of relay selection in Tor. In: Proceedings of the network and distributed security symposium, San Diego, USA

    Google Scholar 

  7. All Pair Ping Project. http://pdos.csail.mit.edu/~strib/pl_app/

  8. Frank D, Russ C, Frans K, Robert M (2004) Vivaldi: a decentralized network coordinate system. In: Proceedings of 2004 SIGCOMM, Portland, OR, USA, pp 15–26

    Google Scholar 

  9. Lee S, Zhang ZL, Sahu S et al (2010) On suitability of euclidean embedding for host-based network coordinate systems. IEEE/ACM Trans Netw 18(1):27–40

    Article  Google Scholar 

  10. Candes EJ, Plan Y (2011) Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans Inf Theory 57(4):2342–2359

    Article  MathSciNet  Google Scholar 

  11. Mao Y, Saul LK, Smith JM (2006) IDES: an internet distance estimation service for large networks. IEEE J Sel Areas Commun 24(12):2273–2284

    Article  Google Scholar 

  12. Wang Z, Chen M, Xing C et al (2013) Multi-Manifold model of the internet delay space. J Netw Comput Appl 36(1):211–218

    Article  Google Scholar 

  13. Liao Y, Geurts P, Leduc G (2010) Network distance prediction based on decentralized matrix factorization. In: Networking. Springer, Heidelberg, pp 15–26

    Google Scholar 

  14. Liao Y, Du W, Geurts P et al (2013) DMFSGD: a decentralized matrix factorization algorithm for network distance prediction. IEEE Trans Netw 21(5):1511–1524

    Article  Google Scholar 

  15. Chen Y, Wang X, Shi C et al (2011) Phoenix: a weight-based network coordinate system using matrix factorization. IEEE Trans Netw Serv Manage 8(4):334–347

    Article  Google Scholar 

  16. Planetlab Dataset. http://www.eecs.harvard.edu/~syrah/nc/sim/pings.4hr.stamp.gz

  17. King Dataset. http://pdos.csail.mit.edu/p2psim/kingdata/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Wang, C., LI, M., Yang, Y. (2016). Short Latency Bias in Latency Matrix Completion. In: Hung, J., Yen, N., Li, KC. (eds) Frontier Computing. Lecture Notes in Electrical Engineering, vol 375. Springer, Singapore. https://doi.org/10.1007/978-981-10-0539-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0539-8_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0538-1

  • Online ISBN: 978-981-10-0539-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics