Skip to main content

Abstract

Because of the harsh and hydrophilic environment of the body, some more potent but poor water-soluble drugs molecule become developed by Shij et al. (Nano Lett 10:3223–3230, 2010 [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230. https://doi.org/10.1021/nl102184c

    Article  CAS  Google Scholar 

  2. Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromol 10:2379–2400. https://doi.org/10.1021/bm900266r

    Article  CAS  Google Scholar 

  3. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle cell interactions. Small 6:12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  Google Scholar 

  4. Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84:1–20. https://doi.org/10.1016/j.ejpb.2012.12.009

    Article  CAS  Google Scholar 

  5. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199. https://doi.org/10.1016/j.addr.2011.03.005

    Article  CAS  Google Scholar 

  6. Rezaie HR, Bakhtiari L, Öchsner A (2015) Biomaterials and their applications. Springer International Publishing, Cham

    Book  Google Scholar 

  7. Shen S, Wu Y, Liu Y, Wu D (2017) High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine 12:4085–4109. https://doi.org/10.2147/IJN.S132780

    Article  Google Scholar 

  8. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698. https://doi.org/10.1016/j.biomaterials.2011.11.004

    Article  CAS  Google Scholar 

  9. Mallakpour S, Khodadadzadeh L (2018) Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrason Sonochem 40:402–409. https://doi.org/10.1016/j.ultsonch.2017.07.033

    Article  CAS  Google Scholar 

  10. Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785. https://doi.org/10.1021/ja805570f

    Article  CAS  Google Scholar 

  11. Hu K, Hsu K, Yeh C (2010) pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 31:6843–6848. https://doi.org/10.1016/j.biomaterials.2010.05.046

    Article  CAS  Google Scholar 

  12. Losic D, Aw MS, Santos A, Gulati K, Bariana M (2015) Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 12:103–127. https://doi.org/10.1517/17425247.2014.945418

    Article  CAS  Google Scholar 

  13. Zhou J, Frank MA, Yang Y, Boccaccini AR, Virtanen S (2018) A novel local drug delivery system: superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Mater Sci Eng C 82:277–283. https://doi.org/10.1016/j.msec.2017.08.066

    Article  CAS  Google Scholar 

  14. Hanif M, Jabbar F, Sharif S, Abbas G, Farooq A, Aziz M (2016) Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner 51:469–477. https://doi.org/10.1180/claymin.2016.051.3.03

    Article  CAS  Google Scholar 

  15. Tang J, Sun D-M, Qian W, Zhu R, Sun X, Wang W, Li K, Wang S-L (2012) One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery. Biol Trace Elem Res 147:408–417. https://doi.org/10.1007/s12011-012-9325-9

    Article  CAS  Google Scholar 

  16. Liang L, Shen J, Wang Q (2017) Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs. Colloids Surf B Biointerfaces 153:168–173. https://doi.org/10.1016/j.colsurfb.2017.02.021

    Article  CAS  Google Scholar 

  17. Colilla M, González B, Vallet-Regí M (2013) Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater Sci 1:114–134. https://doi.org/10.1039/C2BM00085G

    Article  CAS  Google Scholar 

  18. Slowing I, Viveroescoto J, Wu C, Lin V (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Adv Drug Deliv Rev 60:1278–1288. https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  Google Scholar 

  19. Tang J, Chen X, Dong Y, Fu X, Hu Q (2017) Facile synthesis of mesoporous bioactive glass nanospheres with large mesopore via biphase delamination method. Mater Lett 209:626–629. https://doi.org/10.1016/j.matlet.2017.08.033

    Article  CAS  Google Scholar 

  20. Knežević NŽ, Lin VS-Y (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5:1544. https://doi.org/10.1039/c2nr33417h

    Article  CAS  Google Scholar 

  21. Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R, Xiao Y (2010) Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res, Part A 95A:476–485. https://doi.org/10.1002/jbm.a.32873

    Article  CAS  Google Scholar 

  22. McMaster WA, Wang X, Caruso RA (2012) Collagen-templated bioactive titanium dioxide porous networks for drug delivery. ACS Appl Mater Interfaces 4:4717–4725. https://doi.org/10.1021/am301093k

    Article  CAS  Google Scholar 

  23. Yuan X, Xing W, Zhuo S, Han Z, Wang G, Gao X, Yan Z (2009) Preparation and application of mesoporous Fe/carbon composites as a drug carrier. Microporous Mesoporous Mater 117:678–684. https://doi.org/10.1016/j.micromeso.2008.07.039

    Article  CAS  Google Scholar 

  24. Guo Y-J, Long T, Chen W, Ning C, Zhu Z, Guo Y (2013) Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater Sci Eng C 33:3583–3591. https://doi.org/10.1016/j.msec.2013.04.021

    Article  CAS  Google Scholar 

  25. Bakhtiari L, Rezaie HR, Javadpour J, Erfan M, Shokrgozar MA (2015) The effect of synthesis parameters on the geometry and dimensions of mesoporous hydroxyapatite nanoparticles in the presence of 1-dodecanethiol as a pore expander. Mater Sci Eng C 53:1–6. https://doi.org/10.1016/j.msec.2015.01.083

    Article  CAS  Google Scholar 

  26. Bakhtiari L, Javadpour J, Rezaie HR, Erfan M, Shokrgozar MA (2015) The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles. Prog Nat Sci Mater Int 25:185–190. https://doi.org/10.1016/j.pnsc.2015.06.005

    Article  CAS  Google Scholar 

  27. Bakhtiari L, Javadpour J, Rezaie HR, Erfan M, Mazinani B, Aminian A (2016) Pore size control in the synthesis of hydroxyapatite nanoparticles: the effect of pore expander content and the synthesis temperature. Ceram Int 42:11259–11264. https://doi.org/10.1016/j.ceramint.2016.04.041

    Article  CAS  Google Scholar 

  28. Yu P, Xia X, Wu M, Cui C, Zhang Y, Liu L, Wu B, Wang C, Zhang L, Zhou X, Zhuo R, Huang S (2014) Folic acid-conjugated iron oxide porous nanorods loaded with doxorubicin for targeted drug delivery. Colloids Surf B Biointerfaces 120:142–151. https://doi.org/10.1016/j.colsurfb.2014.05.018

    Article  CAS  Google Scholar 

  29. Mirza AZ (2015) A novel drug delivery system of gold nanorods with doxorubicin and study of drug release by single molecule spectroscopy. J Drug Target 23:52–58. https://doi.org/10.3109/1061186X.2014.950667

    Article  CAS  Google Scholar 

  30. Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31:3374–3383. https://doi.org/10.1016/j.biomaterials.2010.01.044

    Article  CAS  Google Scholar 

  31. Liu Z, Liu X, Yuan Q, Dong K, Jiang L, Li Z, Ren J, Qu X (2012) Hybrid mesoporous gadolinium oxide nanorods: a platform for multimodal imaging and enhanced insoluble anticancer drug delivery with low systemic toxicity. J Mater Chem 22:14982. https://doi.org/10.1039/c2jm31100c

    Article  CAS  Google Scholar 

  32. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76. https://doi.org/10.1208/s12249-010-9563-0

    Article  CAS  Google Scholar 

  33. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564. https://doi.org/10.1016/j.biomaterials.2006.11.028

    Article  CAS  Google Scholar 

  34. Wang H, Zhao P, Su W, Wang S, Liao Z, Niu R, Chang J (2010) PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials 31:8741–8748. https://doi.org/10.1016/j.biomaterials.2010.07.082

    Article  CAS  Google Scholar 

  35. Hou L, Shan X, Hao L, Feng Q, Zhang Z (2017) Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater 54:307–320. https://doi.org/10.1016/j.actbio.2017.03.005

    Article  CAS  Google Scholar 

  36. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383. https://doi.org/10.1016/j.ejphar.2011.09.023

    Article  CAS  Google Scholar 

  37. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65:703–718. https://doi.org/10.1016/j.addr.2012.09.036

    Article  CAS  Google Scholar 

  38. Chen T, Zhao T, Wei D, Wei Y, Li Y, Zhang H (2013) Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92:1124–1132. https://doi.org/10.1016/j.carbpol.2012.10.022

    Article  CAS  Google Scholar 

  39. Xu Z, Li B, Tang W, Chen T, Zhang H, Wang Q (2011) Glycopolypeptide-encapsulated Mn-doped ZnS quantum dots for drug delivery: fabrication, characterization, and in vitro assessment. Colloids Surf B Biointerfaces 88:51–57. https://doi.org/10.1016/j.colsurfb.2011.05.055

    Article  CAS  Google Scholar 

  40. Chen M-L, He Y, Chen X, Wang J (2012) Quantum dots conjugated with Fe3O4 -filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476. https://doi.org/10.1021/la303957y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Rezaie, H., Esnaashary, M., Aref arjmand, A., Öchsner, A. (2018). Nanotechnology in Drug Delivery Systems. In: A Review of Biomaterials and Their Applications in Drug Delivery. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0503-9_5

Download citation

Publish with us

Policies and ethics