Skip to main content

Spectral Indices Based Change Detection in an Urban Area Using Landsat Data

  • Conference paper
  • First Online:
Proceedings of Fifth International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 437))

  • 1433 Accesses

Abstract

This paper proposes a technique to detect the change in some dominantly available classes in an urban area such as vegetation, built-up, and water bodies. Landsat Thematic Mapper (TM) and Landsat 8 imageries have been selected for a particular area of NCR (National Capital Region), New Delhi, India. In this study, three spectral indices have been used to characterize three foremost urban land-use classes, i.e., normalized difference built-up index (NDBI) to characterize built-up area, modified normalized difference water index (MNDWI) to signify open water and modified soil-adjusted vegetation index (MSAVI2) to symbolize green vegetation. Subsequently, for reducing the dimensionality of Landsat data, a new FCC has been generated using above mentioned indices, which consist of three thematic-oriented bands in place of the seven Landsat bands. Hence, a substantial reduction is accomplished in correlation and redundancy among raw satellite data, and consequently reduces the spectral misperception of the three land-use classes. Thus, uniqueness has been gained in the spectral signature values of the three dominant land-use classes existing in an urban area. Further, the benefits of using MSAVI2 as compared with NDVI and MNDWI as compared to NDWI for the highly urbanized area have been emphasized in this research work. Through a supervised classification, the three classes have been identified on the imageries and the change between the image pairs has been found. The overall accuracy (OA) of change detection is 92.6 %. Therefore, the study shows that this technique is effective and reliable for detection of change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Unfpa (2009) United Nations Population Fund. Public Health 64, 25–7

    Google Scholar 

  2. Mohan, M., Dagar, L., Gurjar, B.R.: Preparation and validation of gridded emission inventory of criteria air pollutants and identification of emission hotspots for megacity Delhi. Environ. Monit. Assess. 130, 323–339 (2007). doi:10.1007/s10661-006-9400-9

    Article  Google Scholar 

  3. Singh, A.: Digital change detection techniques using remotely sensed data: review article. Int. J. Remote Sens. 10, 989–1003 (1989)

    Article  Google Scholar 

  4. Lyon, J.G., Yuan, D., Lunetta, R.S., Elvidge, C.D.: A change detection experiment using vegetation indices. Photogramm Eng. Remote Sens. 64, 143–150 (1998). doi: citeulike-article-id:7262520

    Google Scholar 

  5. Bouhennache, R., Bouden, T.: Change detection in urban land cover using landsat images satellites, a case study in algiers town. IEEE Xplore 14, 4799–562 (2014)

    Google Scholar 

  6. Guild, L.S., Cohen, W.B., Kauffman, J.B.: Detection of deforestation and land conversion in Rondônia, Brazil using change detection techniques. Int. J. Remote Sens. 25, 731–750 (2004)

    Article  Google Scholar 

  7. Masek, J.G., Lindsay, F.E., Goward, S.N.: Dynamics of urban growth in the Washington DC Metropolitan Area, 1973–1996, from Landsat observations. Int. J. Remote Sens. 21, 3473–3486 (2000)

    Article  Google Scholar 

  8. Xu, H.: Spatial expansion of urban/town in Fuqing and its driving force analysis. Remote Sens. Technol. Appl. 17, 86–92 (2002)

    Google Scholar 

  9. Zhang, Q., Wang, J., Peng, X., Gong, P., Shi, P.: Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int. J. Remote Sens. 23, 3057–3078 (2002)

    Article  Google Scholar 

  10. Zha, Y., Gao, J., Ni, S.: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003)

    Article  Google Scholar 

  11. Xian, G., Crane, M.: Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens. Environ. 97, 203–215 (2005). doi:10.1016/j.rse.2005.04.017

    Google Scholar 

  12. Li, H., Liu, Q.: Comparison of NDBI and NDVI as indicators of surface urban heat island effect in MODIS imagery. In: International Conference on Earth Observation Data Processing and Analysis (ICEODPA), 10 p, SPIE (2008)

    Google Scholar 

  13. Gao, M., Qin, Z., Zhang, H., Lu, L., Zhou, X., Yang, X.: Remote sensing of agro-droughts in Guangdong Province of China using MODIS satellite data. Sensors 8, 4687–4708 (2008)

    Article  Google Scholar 

  14. El Gammal, E.A., Salem, S.M., El Gammal, A.E.A.: Change detection studies on the world’s biggest artificial lake (Lake Nasser, Egypt). Egypt J. Remote Sens. Sp. Sci. 13, 89–99 (2010). doi:10.1016/j.ejrs.2010.08.001

    Google Scholar 

  15. El-Asmar, H.M., Hereher, M.E., El Kafrawy, S.B.: Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: A remote sensing approach. Egypt. J. Remote Sens. Sp. Sci. 16, 119–123 (2013). doi:10.1016/j.ejrs.2013.04.004

    Google Scholar 

  16. Huete, A.: A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988)

    Article  Google Scholar 

  17. Baret, F., Guyot, G., Major, D.: TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: 12th Canadian Symposium on Remote Sensing and IGARSS’90, vol. 4, Vancouver, Canada (1989)

    Google Scholar 

  18. Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S.: A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994). doi:10.1016/0034-4257(94)90134-1

    Article  Google Scholar 

  19. Gao, B.C.: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996). doi:10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  20. Mcfeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996). doi:10.1080/01431169608948714

    Article  Google Scholar 

  21. Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006)

    Article  Google Scholar 

  22. Xu, H.: Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogramm Eng. Remote Sens. 73, 1381–1391 (2007)

    Article  Google Scholar 

  23. Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson/Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  24. Dai, X.: The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 36, 1566–1577 (1998). doi:10.1109/36.718860

    Article  Google Scholar 

  25. Townshend, J.R.G., Justice, C.O., Gurney, C., McManus, J.: The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054–1060 (1992). doi:10.1109/36.175340

    Article  Google Scholar 

  26. Ridd, M.K.: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities†. Int. J. Remote Sens. 16, 2165–2185 (1995)

    Article  Google Scholar 

  27. Mingguo, Z., Qianguo, C., Mingzhou, Q.: The effect of prior probabilities in the maximum likelihood classification on individual classes: a theoretical reasoning and empirical testing. In: 2005 IEEE International Geoscience and Remote Sensing Symposium, pp. 1109–1117 (2009)

    Google Scholar 

  28. Strahler, A.H.: The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ. 10, 135–163 (1980)

    Article  Google Scholar 

  29. Congalton, R.G.: A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991). doi:10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  30. Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002). doi:10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

  31. Foody, G.M.: Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 114, 2271–2285 (2010). doi:10.1016/j.rse.2010.05.003

    Article  Google Scholar 

  32. Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25, 2365–2401 (2004). doi:10.1080/0143116031000139863

    Article  Google Scholar 

  33. Nielsen, A.A., Conradsen, K., Simpson, J.J.: Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sens. Environ. 64, 1–19 (1998). doi:10.1016/S0034-4257(97)00162-4

    Article  Google Scholar 

  34. Hansen, M.C., Loveland, T.R.: A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012)

    Article  Google Scholar 

  35. Fuller, R.M., Smith, G.M., Devereux, B.J.: The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Obs. Geoinf. 4, 243–253 (2003). doi:10.1016/S0303-2434(03)00004-7

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank ‘Housing and urban development corporation’ (HUDCO, New Delhi) to support this research through ‘Rajiv Gandhi HUDCO fellowship,’ given to the institutes of National repute in India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Abhishek Bhatt, Ghosh, S.K., Anil Kumar (2016). Spectral Indices Based Change Detection in an Urban Area Using Landsat Data. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 437. Springer, Singapore. https://doi.org/10.1007/978-981-10-0451-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0451-3_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0450-6

  • Online ISBN: 978-981-10-0451-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics