Skip to main content

An Aggregation Based Approach with Pareto Ranking in Multiobjective Genetic Algorithm

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 437))

Abstract

Genetic algorithms (GA) have been widely used in solving multiobjective optimization problems. The foremost problem limiting the strength of GA is the large number of nondominated solutions and complexity in selecting a preferential candidate among the set of nondominated solutions. In this paper we propose a new aggregation operator which removes the need of calculating crowding distance when two or more candidate solutions belong to the same set of nondominated front. This operator is computationally less expensive with overall complexity of O(m). To prove the effectiveness and consistency, we applied this operator on 11 different, two-objective benchmarks functions with two different recombination and mutation operator pairs. The simulation was carried out over several independent runs and results obtained have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7, 205–230 (1999). doi:10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  2. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms 1 introduction. J. Evol. Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol. Comput. IEEE Trans. 3, 257–271 (1999). doi:10.1109/4235.797969

    Article  Google Scholar 

  4. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, disscussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). doi:10.1109/4235.996017

    Article  Google Scholar 

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Evol. Methods Des. Optim. Control Appl. Ind. Probl. (2001). doi:10.1.1.28.7571

    Google Scholar 

  7. Qu, B.Y., Suganthan, P.N.: Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection. Inf. Sci. (Ny) 180, 3170–3181 (2010)

    Article  MathSciNet  Google Scholar 

  8. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. Evol. Comput. IEEE Trans. 8, 256–279 (2004). doi:10.1109/TEVC.2004.826067

    Article  Google Scholar 

  9. Zhao, S.-Z., Suganthan, P.N.: Multi-Objective Evolutionary Algorithm With Ensemble of External Archives. Int. J. Innov. Comput. Inf. Control 6, 1713–1726 (2010)

    Google Scholar 

  10. Koduru, P., Dong, Z.D.Z., Das, S., et al.: A multiobjective evolutionary-simplex hybrid approach for the optimization of differential equation models of gene networks. IEEE Trans. Evol. Comput. 12, 572–590 (2008). doi:10.1109/TEVC.2008.917202

    Article  Google Scholar 

  11. Kundu, D., Suresh, K., Ghosh, S., et al.: Multi-objective optimization with artificial weed colonies. Inf. Sci. (Ny) 181, 2441–2454 (2011)

    Article  MathSciNet  Google Scholar 

  12. Garza-Fabre, M., Pulido, G.T., Coello, C.A.C.: Ranking methods for many-objective optimization. MICAI 2009 Adv. Artif. Intell. 5845, 633–645 (2009)

    Google Scholar 

  13. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Empirical analysis of using weighted sum fitness functions in NSGA-II for many-objective 0/1 knapsack problems. In: 2009 11th International Conference on Computer Modeling and Simulation, Uksim, pp. 71–76 (2009)

    Google Scholar 

  14. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms. In: Lecture Notes in Computer Science, vol. 4193, Parallel Probl. Solving from Nat.—PPSN IX. pp. 493–502 (2006)

    Google Scholar 

  15. He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 18, 269–285 (2014). doi:10.1109/TEVC.2013.2258025

    Article  Google Scholar 

  16. Deep, K., Singh, K.P., Kansal, M.L., Mohan, C.: An interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment. Expert Syst. Appl. 38, 1659–1667 (2011). doi:10.1016/j.eswa.2010.07.089

    Article  Google Scholar 

  17. Cheng, F.Y., Li, D.: Multiobjective optimization of structures with and without control. J. Guid. Control Dyn. 19, 392–397 (1996). doi:10.2514/3.21631

    Article  MATH  Google Scholar 

  18. Zhou, A., Qu, B.-Y., Li, H., et al.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1, 32–49 (2011). doi:10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  19. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization: TIK-Technical Report No. 112 (2001)

    Google Scholar 

  20. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10, 263–282 (2002). doi:10.1162/106365602760234108

    Article  Google Scholar 

  21. Knowles, J., Corne, D.: Bounded Pareto archiving: theory and practice. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics multiobjective Optimisation, pp 39–64 (2004)

    Google Scholar 

  22. Zhang, Q., Zhou, A., Zhao, S., et al.: Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition. Report, pp. 1–30 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneendra Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Ojha, M., Singh, K.P., Chakraborty, P., Verma, S. (2016). An Aggregation Based Approach with Pareto Ranking in Multiobjective Genetic Algorithm. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 437. Springer, Singapore. https://doi.org/10.1007/978-981-10-0451-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0451-3_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0450-6

  • Online ISBN: 978-981-10-0451-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics