Common Fixed Point Results in Gb Metric Space and Generalized Fuzzy Metric Space Using E.A Property and Altering Distance Function

  • Vishal GuptaEmail author
  • Raman Deep
  • Naveen Gulati
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 437)


Fuzzy logic is a new scientific field which is employed in mathematics, computer science and engineering. Fuzzy logic calculates the extent to which a proposition is correct and allows computer to manipulate the information. In this paper, our objective is to prove fixed point results in the setting of G b metric space and generalized fuzzy metric space. The concept of G b metric space is given by Aghajani in 2013, which is generalization of G-metric space and b metric space. Sedghi et al., proved results on G b metric space using continuity and commutativity. Also, the notion of generalized Fuzzy metric space is given by Sung and Yang. In 2011, Rao et al., proved results in generalized fuzzy metric space using w-compatible mappings. Here, to prove the results notion of E.A property, weakly compatible property and contractive type condition have been utilized. Our results extend and generalize the results of many authors existing in the literature. An example has also been given to justify the result.


Common fixed point E.A property Gb metric space Generalized fuzzy metric space Altering distance function Weakly compatible mapping 



The authors would like to express their sincere appreciation to the referees for their helpful suggestions and many kind comments.


  1. 1.
    Mustafa, Z., Sims, B.: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289–297 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Rao, K.P.R., Altun, I., Bindu, S.H.: Common coupled fixed point theorems in Generalized fuzzy metric spaces. Adv. Fuzzy Syst. Article I.D 986748, 6 pp. (2011)Google Scholar
  3. 3.
    Abbas, M., Rhoades, B.: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comp. 215, 262–269 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aydi, H., Shatanawi, W., Vetro, C.: On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math Appl. 62, 4222–4229 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gu, F., Shen, Y., Wang, L.: Common fixed points results under a new contractive condition without using continuity. J. Inequalities Appl. 464 (2014)Google Scholar
  6. 6.
    Parvaneh, V., Abdolrahman, R., Jamal, R.: Common fixed points of six mappings in partially ordered G-metric spaces. Math. Sci. 7(18) (2013)Google Scholar
  7. 7.
    Obiedat, Hamed, Mustafa, Zead: Fixed point results on a nonsymmetric G-metric spaces. Jordan J. Math. Statis. 3(2), 65–79 (2010)zbMATHGoogle Scholar
  8. 8.
    Chugh, R., Kadian, T., Rani, A., Rhoades, B.E.: Property P in G-metric space. Fixed Point Theor. Appl. Article ID 401684, 12pp (2010)Google Scholar
  9. 9.
    Altun, I., Simsek, H.: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theor. Appl. Article ID 621469, 17pp. (2010)Google Scholar
  10. 10.
    Shatanawi, W.: Some Fixed point theorems in ordered G-metric space and applications. Abstract Appl. Anal. Article ID 126205, 11pp. (2011)Google Scholar
  11. 11.
    Abbas, M., Khan, S.H., Nazir, T.: Common fixed points of R-weakly computing maps in generalized metric spaces. Fixed Point Theor. Appl. 1(41) (2011)Google Scholar
  12. 12.
    Pant, R.P., Swales, M.: Common fixed points of four mappings. Bull. Calcutta Math. Soc. 90, 281–286 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Pant, R.P., Arora, R.K.: Weak reciprocal continuity and fixed point theorems. Ann. Uni. Ferra 57, 181–190 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mustafa, Z., Roshan, J. R., Parvaneh, V.: Coupled coincidence point results for (ψ, ϕ)-weakly contractive mappings in partially ordered Gb-metric spaces. Fixed Point Theor. Appl. 206 (2013)Google Scholar
  15. 15.
    Khan, M.S., Swales, M.: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1–9 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sessa, S.: On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. 32, 149–153 (1982)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Jungck, G.: Compatible mappings and common fixed point. Int. J. Math. Math. Sci. 9, 771–779 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jungck, G.: Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci. 4, 199–215 (1996)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Aamri, M., Moutawakil, D.El.: Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl. 270, 181–188 (2002)Google Scholar
  20. 20.
    Abbas, M., Nazir, T., Doric, D.: Common fixed point of mappings satisfying E.A property in generalized metric spaces. Appl. Math. Comput. 218(14), 7665–7670 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Long, W., Abbas, M., Nazir, T., Radenovi´c, S.: Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstract and Applied Analysis, Article ID 394830, 15 pp. (2012)Google Scholar
  22. 22.
    Gu, F., Shatanawi, W.: Common fixed point of generalized weakly G-contraction mappings satiusfying common (E.A) property in G-metric spaces. Fixed Point Theor. Appl. 309 (2013)Google Scholar
  23. 23.
    Mustafa, Z., Aydi, H., Karapinar, E.: On common fixed points in G-metric spaces using (E.A) property. Comput. Math. Appl. Article in PressGoogle Scholar
  24. 24.
    Czerwik, S.: Nonlinear set-valued contration mappings in b-metric spaces. Int. J. Mod. Math. 4(3), 285–301 (2009)MathSciNetGoogle Scholar
  25. 25.
    Boriceanu, M., Petrusel, A., Rus, I.A.: Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Statis. 6, 65–76 (2010)MathSciNetGoogle Scholar
  26. 26.
    Yingtaweesittikul, Hatairat: Suzuki type fixed point theorems for generalized multi-valued mappings in b-metric spaces. Fixed Point Theor. Appl. (2013). doi: 10.1186/1687-1812-2013-215 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat 28(6), 1087–1101 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mustafa, Z., Roshan, J. R., Parvaneh, V.: Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations. J. Inequ. Appl. 453 (2013)Google Scholar
  29. 29.
    Sedghi, S., Shobkolaei, N., Roshan, J.R., Shatanawi, W.: Coupled fixed point theorems in Gb-metric space. Matematiqki Vesnik 66(2), 190–201 (2014)MathSciNetGoogle Scholar
  30. 30.
    Sun, G., Yang, K.: Generalized fuzzy metric spaces with properties. Res. J. Appl. Sci. 2, 673–678 (2010)MathSciNetGoogle Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kramosil, O., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Gupta, V., Kanwar, A.: Fixed Point Theorem in Fuzzy metric spaces satisfying E.A property. Indian J. Sci. Technol. 5(12), 3767–3769 (2012)Google Scholar
  34. 34.
    Gupta, V., Kanwar, A., Singh, S.B.: Common fixed point theorem on fuzzy metric spaces using biased maps of type Rm. In: Jimson, M., Singh, H., Rakesh, K.B., Mahesh, P. (eds.) Advances in Energy Aware Computing and Communication Systems, pp. 227–233. McGraw Hill Education (2013)Google Scholar
  35. 35.
    Gupta, V., Mani, N.: Existence and uniqueness of fixed point in fuzzy metric spaces and its applications. In: Janusz, K.W. (Series editor), Babu, B.V., Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (Volume Editors) Advances in Intelligent Systems and Computing, vol. 236, pp. 217–224. Springer (2014)Google Scholar
  36. 36.
    Gupta, V., Mani, N.: Common fixed points using E.A property in fuzzy metric spaces. advances in intelligent systems and computing. In: Janusz, K.W. (Series Editor), Pant, M., Deep, K., Nagar, A., Bansal, J.C. (Volume Editors), vol. 259, pp. 45–54. Springer (2014)Google Scholar
  37. 37.
    Gupta, V., Saini, R.K., Mani, N., Tripathi, A. K.: Fixed point theorems by using control function in fuzzy metric spaces. Cognet Mathematics (Taylor and Francis), vol. 2, no. 1, 7pp. (2015)Google Scholar
  38. 38.
    Saini, R.K., Gupta, V., Singh, S.B.: Fuzzy version of some fixed point theorems on Expansion type maps in Fuzzy metric Space. Thai J. Math. Math. Assoc. Thailand 5(2), 245–252 (2007)Google Scholar
  39. 39.
    Saini, R.K., Kumar, M., Gupta, V., Singh, S.B.: Common Coincidence points of R-Weakly Commuting Fuzzy Maps. Thai J. Math. Math. Assoc. Thailand 6(1), 109–115 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of MathematicsMaharishi Markandeshwar University, MullanaAmbalaIndia
  2. 2.Department of MathematicsS.D(P.G) CollegeAmbala CanttIndia

Personalised recommendations