Skip to main content

Acoustic Performance of Silica Aerogel Composites

  • Chapter
  • First Online:
Silica Aerogel Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Acoustics is the interdisciplinary science that deals with the study of mechanical waves and vibrations in the three states of matter with the aid of a medium to propagate. Sound is often described as audible waves and vibrations in the spectrum of 20–20 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azevedo, M.N., N. Xiang and C. Fackler. 2011. Low frequency absorption and attenuation of granular aerogel composites. 40th International Congress and exposition on noise control engineering 2011, INTER-NOISE 2011, INCEJ and ASJ, September 4–7, in Osaka, Japan.

    Google Scholar 

  • Bandarian, M., A. Shojaei, and A.M. Rashidi. 2011. Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polymer International 60(3): 475–482.

    Article  Google Scholar 

  • Basirjafari, S., R. Malekfar, and S. Esmaielzadeh Khadem. 2012. Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams. Journal of Applied Physics 112(10): 104312.

    Article  Google Scholar 

  • Bheekhun, N., A.R. Abu Talib, and M.R. Hassan. 2013. Aerogels in aerospace: an overview. Advances in Materials Science and Engineering 2013: 18.

    Article  Google Scholar 

  • Botts, J., and N. Xiang. 2012. Bayesian inference for acoustic impedance boundaries in room-acoustic finite difference time-domain modeling. AIP Conference Proceedings 1443(1): 306–313.

    Article  Google Scholar 

  • Buratti, C., and E. Moretti. 2013. 10—Silica nanogel for energy-efficient windows. In Nanotechnology in Eco-Efficient Construction, eds. F. Pacheco-Torgal, M.V. Diamanti, A. Nazari and C.G. Granqvist, 207–235. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Caponi, S., G. Carini, G. D’Angelo, A. Fontana, O. Pilla, F. Rossi, F. Terki, G. Tripodo, and T. Woignier. 2004. Acoustic and thermal properties of silica aerogels and xerogels. Physical Review B 70(21): 214204.

    Article  Google Scholar 

  • Cotana, F., A.L. Pisello, E. Moretti, and C. Buratti. 2014. Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Building and Environment 81: 92–102.

    Article  Google Scholar 

  • Dowling, A.P., and J.E.F. Williams. 1983. Sound and Sources of Sound. Chichester: E. Horwood.

    Google Scholar 

  • Fackler, C., N. Xiang, G. Churu, D.P. Mohite, N. Leventis, C. Sotiriou-Leventis and H. Lu. 2012. Experimental investigation of the acoustic attenuation by monolithic polyurea aerogels. 41st International Congress and Exposition on Noise Control Engineering 2012, INTER-NOISE 2012, August 19–22. New York: Institute of Noise Control Engineering of the USA.

    Google Scholar 

  • Feng, L. 2013. Modified impedance tube measurements and energy dissipation inside absorptive materials. Applied Acoustics 74(12): 1480–1485.

    Article  Google Scholar 

  • Forest, L., V. Gibiat, and A. Hooley. 2001. Impedance matching and acoustic absorption in granular layers of silica aerogels. Journal of Non-Crystalline Solids 285(1–3): 230–235.

    Article  Google Scholar 

  • Forest, L., V. Gibiat, and T. Woignier. 1998. Evolution of the acoustical properties of silica alcogels during their formation. Ultrasonics 36(1–5): 477–481.

    Article  Google Scholar 

  • Fricke, J., and G. Reichenauer. 2011. Thermal. acoustical and structural properties of silica aerogels. In MRS Proceedings. Vol. 73.

    Google Scholar 

  • Gross, J., J. Fricke, and L.W. Hrubesh. 1992. Sound-propagation in Sio2 aerogels. Journal of the Acoustical Society of America 91(4): 2004–2006.

    Article  Google Scholar 

  • Henderson, W., P. Goggans, N. Xiang, and J. Botts. 2013. Bayesian inference approach to room-acoustic modal analysis. AIP Conference Proceedings 1553(1): 38–45.

    Article  Google Scholar 

  • International, A. 2012. ASTM E1050-12, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System. West Conshohocken: ASTM International.

    Google Scholar 

  • Kim, Y.-H. 2010a. Acoustic Wave Equation and Its Basic Physical Measures. Sound Propagation, 69–128. NJ: John Wiley & Sons, Ltd.

    Google Scholar 

  • Kim, Y.-H. 2010b. Vibration and Waves. Sound Propagation, 1–68. NJ: John Wiley & Sons, Ltd.

    Google Scholar 

  • Mahesh, S., and S.C. Joshi. 2015. Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites. International Journal of Heat and Mass Transfer 87: 606–615.

    Article  Google Scholar 

  • Palumbo, D.L., M.G. Jones, and J. Klos. 2004. Improvements to the two-thickness method for derviring acoustic properties of materials. NOISE Conference. Baltimore: National Technical Information Service.

    Google Scholar 

  • Riffat, S.B., and G. Qiu. 2013. A review of state-of-the-art aerogel applications in buildings. International Journal of Low-Carbon Technologies 8(1): 1–6.

    Article  Google Scholar 

  • Robinson, P., and N. Xiang. 2010. On the subtraction method for in-situ reflection and diffusion coefficient measurements. The Journal of the Acoustical Society of America 127(3): EL99–EL104.

    Google Scholar 

  • Sachithanadam, M., and S.C. Joshi. 2013. High strain recovery with improved mechanical properties of gelatin–silica aerogel composites post-binding treatment. Journal of Materials Science 49(1): 163–179.

    Article  Google Scholar 

  • Sachithanadam, M., and S.C. Joshi. 2014. A new phenomenon of compressive strain recovery in gelatin-silica aerogel composites with SDS. Procedia Engineering 75: 51–55.

    Article  Google Scholar 

  • Smith, C.D., and T.L. Parrott. 1983. Comparison of three methods for measuring acoustic properties of bulk materials. The Journal of the Acoustical Society of America 74(5): 1577–1582.

    Article  Google Scholar 

  • Sung Soo, J., K. Yong Tae, L. Yong Bong, C. Seung Il, and L. Jong Kyu. 2008. Measurement of sound transmission loss by using impedance tubes. Journal of the Korean Physical Society 53(2): 596–600.

    Article  Google Scholar 

  • Verdejo, R., R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M.A. Rodriguez-Perez, P.A. Brühwiler, and M. Shaffer. 2009. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology 69(10): 1564–1569.

    Article  Google Scholar 

  • Vigran, T.E. 2012. Normal incidence sound transmission loss in impedance tube—measurement and prediction methods using perforated plates. Applied Acoustics 73(4): 454–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Chandrakant Joshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sachithanadam, M., Joshi, S.C. (2016). Acoustic Performance of Silica Aerogel Composites. In: Silica Aerogel Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0440-7_7

Download citation

Publish with us

Policies and ethics