Skip to main content

Fabrication Methods

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The high porosity and nanoscaled pores with many dead ends in silica aerogels structure have contributed to their ultralow density, low thermal conductivity , high optical transmittance , acoustic attenuation and hydrophobic properties. However, silica aerogels are brittle with very low strength , and modulus , which compromise their commercial use. These limitations have warranted the need to broaden and optimize the usefulness for a variety of applications. To overcome this drawback, silica aerogels have since been added with another material, such as polymers and metals, prior to gelation stage of manufacturing before the drying the process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aristippos, G. 2002. Soft gelatin capsules. Protein-based films and coatings. Boca Raton: CRC Press.

    Google Scholar 

  • Balakrishnan, A., and M.C. Saha. 2011. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Materials Science and Engineering A 528(3): 906–913.

    Google Scholar 

  • Bertino, M.F., J.F. Hund, G. Zhang, C. Sotiriou-Leventis, A.T. Tokuhiro, and N. Leventis. 2004. Room temperature synthesis of noble metal clusters in the mesopores of mechanically strong silica-polymer aerogel composites. Journal of Sol-Gel Science and Technology 30(1): 43–48.

    Article  Google Scholar 

  • Boday, D.J., K.A. DeFriend, K.V. Wilson, D. Coder, and D.A. Loy. 2008. Formation of polycyanoacrylate—silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels. Chemistry of Materials 20(9): 2845–2847.

    Article  Google Scholar 

  • Boris, D., Z. Anatoliy, and Y. Elena. 2001. Application of water soluble polymers and their complexes for immunoanalytical purposes. Smart polymers. Boca Raton: CRC Press.

    Google Scholar 

  • Candau, F., S. Biggs, A. Hill, and J. Selb. 1994. Synthesis, structure and properties of hydrophobically associating polymers. Progress in Organic Coatings 24(1–4): 11–19.

    Article  Google Scholar 

  • Chattopadhyay, D.K., and D.C. Webster. 2009. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 34(10): 1068–1133.

    Article  Google Scholar 

  • Cheng, W., J. Peter Daniel, and C. Jonathan. 2004. DNA Demethylating agents. DNA methylation, 151–167. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Cheong, S., B. Kim, H. Lee, and J. Rhim. 2013. Physical adsorption of water-soluble polymers on hydrophobic polymeric membrane surfaces via salting-out effect. Macromolecular Research 21(6): 629–635.

    Google Scholar 

  • Fang, Z., G.-C. Zhou, S.-L. Zheng, G.-L. He, J.-L. Li, L. He, and D. Bei. 2007. Lithium chloride-catalyzed selective demethylation of aryl methyl ethers under microwave irradiation. Journal of Molecular Catalysis A: Chemical 274(1–2): 16–23.

    Article  Google Scholar 

  • Fidler, C. (W. S., PA), and C.S. Thomas (Willow Street, PA). 1996. Aerogel-in-foam thermal insulation and its preparation. United States: Armstrong World Industries, Inc. (Lancaster, PA).

    Google Scholar 

  • Fidler, C. (W. S., PA), and C.S. Thomas (Willow Street, PA) (2000). Aerogel-in-foam thermal insulation and its preparation. United States, Armacell LLC (DE).

    Google Scholar 

  • Frydrych, M., C. Wan, R. Stengler, K.U. O’Kelly, and B. Chen. 2011. Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. Journal of Materials Chemistry 21(25): 9103–9111.

    Article  Google Scholar 

  • Gary, C., F. Mikhail, and S. Parminder. 2008. Hydrophilic adhesives. Technology of pressure-sensitive adhesives and products. Boca Raton: CRC Press, 7-1-7-80.

    Google Scholar 

  • Ge, D.T., L.L. Yang, Y. Li, and J.P. Zhao. 2009. Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. Journal of Non-Crystalline Solids 355(52–54): 2610–2615.

    Article  Google Scholar 

  • Gojny, F.H., J. Nastalczyk, Z. Roslaniec, and K. Schulte. 2003. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters 370(5–6): 820–824.

    Article  Google Scholar 

  • Gupta, N., and W. Ricci. 2008. Processing and compressive properties of aerogel/epoxy composites. Journal of Materials Processing Technology 198(1–3): 178–182.

    Article  Google Scholar 

  • Ioannis, A. 2002. Formation and properties of and gelatin films and coatings. Protein-based films and coatings. Boca Raton: CRC Press.

    Google Scholar 

  • Jens, H., C. Rainer, and L. Michael. 2004. DNA Demethylating agents. DNA Methylation, 183–212. Boca Raton: CRC Press.

    Google Scholar 

  • Jie, H. 2004. Structures and properties of carbon nanotubes. Carbon nanotubes, 1–24. Boca raton: CRC Press.

    Google Scholar 

  • Jing, L. 2004. Carbon nanotube applications. Carbon nanotubes, 213–235. Boca Raton: CRC Press.

    Google Scholar 

  • Jones, K., X. Roset, S. Rossiter, and P. Whitfield. 2003. Demethylation of 2,4-dimethoxyquinolines: The synthesis of atanine. Organic and Biomolecular Chemistry 1(24): 4380–4383.

    Article  Google Scholar 

  • Karlson, L., C. Malmborg, K. Thuresson, and O. Söderman. 2003. Complex formed in the system hydrophobically modified polyethylene glycol/methylated α-cyclodextrin/water. An NMR diffusometry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 228(1–3): 171–179.

    Google Scholar 

  • Katti, A., N. Shimpi, S. Roy, H. Lu, E.F. Fabrizio, A. Dass, L.A. Capadona, and N. Leventis. 2006. Chemical, physical, and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels. Chemistry of Materials 18(2): 285–296.

    Article  Google Scholar 

  • Kim, P., L. Shi, A. Majumdar, and P.L. McEuen. 2001. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87(21): 215502.

    Article  Google Scholar 

  • Kozlov, P.V., and G.I. Burdygina. 1983. The structure and properties of solid gelatin and the principles of their modification. Polymer 24(6): 651–666.

    Article  Google Scholar 

  • Lee, K.-H., S.-Y. Kim, and K.-P. Yoo. 1995. Low-density, hydrophobic aerogels. Journal of Non-Crystalline Solids 186: 18–22.

    Google Scholar 

  • Liao, Y., H. Wu, Y. Ding, S. Yin, M. Wang, and A. Cao. 2012. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. Journal of Sol-Gel Science and Technology 63(3): 445–456.

    Google Scholar 

  • Liu, X., and P.X. Ma. 2009. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25): 4094–4103.

    Google Scholar 

  • Meador, M.A.B., E.F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J.C. Johnston, and N. Leventis. 2005. Cross-linking amine-modified silica aerogels with epoxies: Mechanically strong lightweight porous materials. Chemistry of Materials 17(5): 1085–1098.

    Google Scholar 

  • Meador, M.A.B., S.L. Vivod, L. McCorkle, D. Quade, R.M. Sullivan, L.J. Ghosn, N. Clark, and L.A. Capadona. 2008. Reinforcing polymer cross-linked aerogels with carbon nanofibers. Journal of Materials Chemistry 18(16): 1843–1852.

    Article  Google Scholar 

  • Meador, M.A.B., A.S. Weber, A. Hindi, M. Naumenko, L. McCorkle, D. Quade, S.L. Vivod, G.L. Gould, S. White, and K. Deshpande. 2009. Structure—property relationships in porous 3D nanostructures: Epoxy-cross-linked silica aerogels produced using ethanol as the solvent. ACS Applied Materials & Interfaces 1(4): 894–906.

    Google Scholar 

  • Mo, X., and X. Sun. 2000. Thermal and mechanical properties of plastics molded from sodium dodecyl sulfate-modified soy protein isolates. Journal of Polymers and the Environment 8(4): 161–166.

    Article  Google Scholar 

  • Mohanan, J.L., and S.L. Brock. 2003. Influence of synthetic and processing on the surface area, speciation, and particle formation in copper oxide/silica aerogel composites. Chemistry of Materials 15(13): 2567–2576.

    Google Scholar 

  • Moner-Girona, M., A. Roig, E. Molins, E. Martinez, and J. Esteve. 1999. Micromechanical properties of silica aerogels. Applied Physics Letters 75(5): 653–655.

    Article  Google Scholar 

  • Obrey, K.A.D., K.V. Wilson, and D.A. Loy. 2011. Enhancing mechanical properties of silica aerogels. Journal of Non-Crystalline Solids 357(19–20): 3435–3441.

    Article  Google Scholar 

  • Podhajecka, K., K. Prochazka, and D. Hourdet. 2007. Synthesis and viscoelastic behavior of water-soluble polymers modified with strong hydrophobic side chains. Polymer 48(6): 1586–1595.

    Google Scholar 

  • Pop, E., D. Mann, Q. Wang, K. Goodson, and H. Dai. 2005. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters 6(1): 96–100.

    Article  Google Scholar 

  • Rao, A.V., M.M. Kulkarni, G.M. Pajonk, D.P. Amalnerkar, and T. Seth. 2003. Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a Co-precursor. Journal of Sol-Gel Science and Technology 27(2): 103–109.

    Article  Google Scholar 

  • Ren, H., and L. Zhang. 2010. In situ growth approach for preparation of Au nanoparticle-doped silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 372(1–3): 98–101.

    Article  Google Scholar 

  • Rivière, SMaJC. 2012. Carbon nanotubes and other tube structures. Characterization of nanostructures, 215–252. Boca Raton: CRC Press.

    Google Scholar 

  • Roy, M. C. S. K. 2008. Industrial polymers. Industrial polymers, specialty polymers, and their applications. Boca Raton: CRC Press, 1-1-1-161.

    Google Scholar 

  • Ruiz, C.C., L. Díaz-López, and J. Aguiar. 2008. Micellization of sodium dodecyl sulfate in glycerol aqueous mixtures. Journal of Dispersion Science and Technology 29(2): 266–273.

    Article  Google Scholar 

  • Santos, A., J.A. Toledo-Fernández, R. Mendoza-Serna, L. Gago-Duport, N. de la Rosa-Fox, M. Piñero, and L. Esquivias. 2006. Chemically active silica aerogel—wollastonite composites for CO2 fixation by carbonation reactions. Industrial and Engineering Chemistry Research 46(1): 103–107.

    Article  Google Scholar 

  • Schweitzer, P.A. 2006. Thermoset polymers. Corrosion of polymers and elastomers, 147–220. Boca Raton: CRC Press.

    Google Scholar 

  • Shoeb, J., and M.J. Kushner. 2011. Minimizing damage of porous SiCOH using He/H2 plasmas. In 2011 Abstracts IEEE International Conference on Plasma Science (ICOPS).

    Google Scholar 

  • Sinha, S., S. Barjami, G. Iannacchione, A. Schwab, and G. Muench. 2005. Off-axis thermal properties of carbon nanotube films. Journal of Nanoparticle Research 7(6): 651–657.

    Article  Google Scholar 

  • Smitha, S., P. Mukundan, P. Krishna Pillai, and K.G.K. Warrier. 2007. Silica-gelatin bio-hybrid and transparent nano-coatings through sol-gel technique. Materials Chemistry and Physics 103(2–3): 318–322.

    Article  Google Scholar 

  • Soleimani Dorcheh, A., and M.H. Abbasi. 2008. Silica aerogel; synthesis properties and characterization. Journal of Materials Processing Technology 199(1–3): 10–26.

    Article  Google Scholar 

  • Tagmatarchis, N., and M. Prato. 2005. Carbon-based materials: From fullerene nanostructures to functionalized carbon nanotubes. Pure and Applied Chemistry 77(10): 1675–1684.

    Article  Google Scholar 

  • Thomas, K. 1998. Gelatin. Handbook of biodegradable polymers. Boca Raton: CRC Press.

    Google Scholar 

  • Veronica, V., and T. Adrian. 2010. Water. Water and life, 235–247. Boca Raton: CRC Press.

    Google Scholar 

  • Wu, H., Y. Chen, Q. Chen, Y. Ding, X. Zhou, and H. Gao. 2013. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. Journal of Nanomaterials 2013: 8.

    Google Scholar 

  • Xu, Z., L. Gan, Y. Jia, Z. Hao, M. Liu, and L. Chen. 2007. Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. Journal of Sol-Gel Science and Technology 41(3): 203–207.

    Google Scholar 

  • Yakimets, I., N. Wellner, A.C. Smith, R.H. Wilson, I. Farhat, and J. Mitchell. 2005. Mechanical properties with respect to water content in glassy state. Polymer 46(26): 12577–12585.

    Article  Google Scholar 

  • Yang, X., Y. Sun, D. Shi, and J. Liu. 2011. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite. Materials Science and Engineering A 528(13–14): 4830–4836.

    Article  Google Scholar 

  • Yannas, I.V., and A.V. Tobolsky. 1968. High-temperature transformations of gelatin. European Polymer Journal 4(2): 257–264.

    Article  Google Scholar 

  • Ye, L., Z.-H. Ji, W.-J. Han, J.-D. Hu, and T. Zhao. 2010. Synthesis and characterization of silica/carbon composite aerogels. Journal of the American Ceramic Society 93(4): 1156–1163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Chandrakant Joshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sachithanadam, M., Joshi, S.C. (2016). Fabrication Methods. In: Silica Aerogel Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0440-7_3

Download citation

Publish with us

Policies and ethics