Skip to main content

Protocol Stack of WSNs

  • Chapter
  • First Online:
Wireless Sensor Networks

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Several considerations must be taken when developing protocols for wireless sensor networks. Traditional thinking where the focus is on quality of service is somehow revised. In WSNs, QoS is compromised to conserve energy and preserve the life of the network. Concern must be accorded at every level of the protocol stack to conserve energy, and to allow individual nodes to reconfigure the network and modify their set of tasks according to the resources available. The protocol stack for WSNs consists of five standard protocol layers trimmed to satisfy typical sensors features, namely, application layer , transport layer , network layer , data-link layer, and physical layer . These layers address network dynamics and energy efficiency. Functions such as localization, coverage, storage, synchronization, security, and data aggregation and compression are network services that enable proper sensors functioning. Implementation of WSNs protocols at different layers in the protocol stack aims at minimizing energy consumption , and end-to-end Congestion control: end-to-end delay, and maintaining system efficiency. Traditional networking protocols are not designed to meet these WSNs requirements, hence, new energy-efficient protocols have been proposed for all layers of the protocol stack. These protocols employ cross-layer optimization by supporting interactions across the protocol layers. Specifically, protocol state information at a particular layer is shared across all the layers to meet the specific requirements of the WSN.

Etiquette is protocol, rules of behavior ..

How a gentleman opens the door for a lady, how he smiles and handshakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgawad, A., & Bayoumi, M. (2012). Data Fusion in WSN. In R.-A. D. Networks, Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks (Vol. 118, pp. 17–35). Springer-Verlag.

    Google Scholar 

  • Akcan, H., & Brönnimann, H. (2007). A New Deterministic Data Aggregation Method for Wireless Sensor Networks. Signal Processing, 87 (12), 2965–2977.

    Article  MATH  Google Scholar 

  • Akkaya, K., & Younis, M. (2005). A Survey on Routing Protocols for Wireless Sensor Networks . Ad Hoc Networks, 3 (3), 325–349.

    Article  Google Scholar 

  • Akkaya, K., Younis, M., & Youssef, W. (2007). Positioning of Base Stations in Wireless Sensor Networks. Communications Magazine, 45 (4), 96–102.

    Article  Google Scholar 

  • Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A Survey on Sensor Networks. Communications Magazine, 40 (8), 102–114.

    Article  Google Scholar 

  • Akyildiz, I., Vuran, M. C., & Akan, O. (2006). A Cross-Layer Protocol for Wireless Sensor Networks. 40th Annual Conference on Information Sciences and Systems (pp. 1102–1107). Princeton, NJ: IEEE.

    Google Scholar 

  • Brayne, A., Lopes, A., Meira, D., Vasconcelos, R., & Menezes, R. (2008). An Adaptive in-Network Aggregation Operator for Query Processing in Wireless Sensor Networks. Journal of Systems and Software, 81 (3), 328–342.

    Article  Google Scholar 

  • Chakrabarti, A., Sabharwal, A., & Aazhang, B. (2003). Using Predictable Observer Mobility for Power Efficient Design of Sensor Networks. In F. Zhao, & L. Guibas, Information Processing in Sensor Networks (pp. 129–145). Springer-Verlag.

    Google Scholar 

  • Elson, J., & Römer, K. (2003). Wireless Sensor Networks: A New Regime for Time Synchronization . ACM SIGCOMM Computer Communication Review, 33 (1), 149–154 .

    Article  Google Scholar 

  • Galperti, C., & Alippi, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I, 55 (6), 1742–1750 .

    Article  MathSciNet  Google Scholar 

  • Gilbert, J. M., & Balouchi, F. (2008). Comparison of Energy Harvesting Systems for Wireless Sensor Networks. International Journal of Automation and Computing, 5 (4), 334–347.

    Article  Google Scholar 

  • Hande, A., Polk, T. W., & Bhatia, D. (2007). Indoor Solar Energy Harvesting for Sensor Network Router Nodes. Microprocessors and Microsystems, 31 (6), 420–432.

    Article  Google Scholar 

  • Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An Application Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Communication, 1 (4), 660–670.

    Article  Google Scholar 

  • Holland, M., Wang, T., Tavli, B., Seyedi, A., & Heinzelman, W. (2011). Optimizing Physical Layer Parameters for Wireless Sensor Networks. ACM Transactions on Sensor Networks (TOSN), 7 (4), 28:1–28:20.

    Google Scholar 

  • Howitt, I., Manges, W. W., Kuruganti, P., Allgood, G., Gutierrez, J. A., & Conrad, J. M. (2006). Wireless industrial sensor networks: Framework for QoS Performance metrics of WSNs: quality of service assessment and QoS management. ISA Transactions, 45 (3), 347–359.

    Article  Google Scholar 

  • Kim, S., Ko, J., Yoon, J., & Lee, H. (2007). Multiple-Objective Metric for Placing Multiple Base Stations in Wireless Sensor Networks. 2nd International Symposium on Wireless Pervasive Computing (ISWPC). San Juan, Puerto Rico: IEEE.

    Google Scholar 

  • Kulik, J., Heinzelman, W., & Balakrishnan, H. (2002). Negotiation–Based Protocols for Disseminating Information in Wireless Sensor Networks. Wireless Networks, 8 (2/3), 169–185.

    Article  MATH  Google Scholar 

  • Lazos, L., Poovendran, R., & ÄŒapkun, S. (2005). ROPE: Robust Position Estimation in Wireless Sensor Networks. The 4th International Symposium on Information Processing in Sensor Networks (IPSN). Los Angeles, CA: ACM.

    Google Scholar 

  • Le Borgne, Y., Santini, S., & Bontempi, G. (2007). Adaptive Model Selection for Time Series Prediction in Wireless Sensor Networks. Signal Processing, 87 (12), 3010–3020.

    Article  MATH  Google Scholar 

  • Lei, W., & Yuan, F. G. (2008). Vibration energy harvesting by magnetostrictive material. Smart Materials and Structures, 17 (4).

    Google Scholar 

  • Pang, B. M., Shi, H. S., & Li, Y. X. (2012). An Energy-Efficient MAC Protocol for Wireless Sensor Network. In Y. Zhang, & Springer-Verlag (Ed.), Future Wireless Networks and Information Systems (Vol. 1, pp. 163–170).

    Google Scholar 

  • Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. J. (2006). Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks. Wireless Networks, 12 (1).

    Google Scholar 

  • Rehena, Z., Roy, S., & Mukherjee, N. (2011). A Modified SPIN for Wireless Sensor Networks. Third International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–4). Bangalore, India: IEEE.

    Google Scholar 

  • Salhieh, A., Weinmann, J., Kochhal, M., & Schwiebert, L. (2001). Power Efficient Topologies for Wireless Sensor Networks. International Conference on Parallel Processing (pp. 156–163). Valencia, Spain: IEEE.

    Google Scholar 

  • Seah, W., Eu, Z., & Tan, H. (2009). Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges. 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE) (pp. 1–5). Aalborg, Denmark: IEEE.

    Google Scholar 

  • Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. (2000). Protocols for Self-Organization of a Wireless Sensor Network. Personal Communications, 7 (5), 16–27.

    Article  Google Scholar 

  • Sommer, P., & Wattenhofer, R. (2009). Gradient Clock Synchronization in Wireless Sensor Networks. The 2009 International Conference on Information Processing in Sensor Networks (IPSN) (pp. 37–48). San Francisco, CA: ACM.

    Google Scholar 

  • Sun, K., Ning, P., & Wang, C. (2006). Secure and Resilient Clock Synchronization in Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications, 24 (2), 395–408.

    Article  Google Scholar 

  • Sundararaman, B., Buy, U., & Kshemkalyani, A. D. (2005). Clock Synchronization for Wireless Sensor Networks: A Survey. Ad Hoc Networks, 3 (3), 281–323.

    Article  Google Scholar 

  • Tennina, S., Di Renzo, M., Graziosi, F., & Santucci, F. (2009). ESD: A Novel Optimisation Algorithm for Positioning Estimation of Wsns in GPS-Denied Environments – From Simulation To Experimentation. International Journal of Sensor Networks, 6 (3/4), 131–156.

    Article  Google Scholar 

  • Tennina, S., Di Renzo, M., Graziosi, F., & Santucci, F. (2008, September 19). Locating Zigbee® Nodes using the Ti®S Cc2431 Location Engine: A Testbed Platform and New Solutions for Positioning Estimation of Wsns in Dynamic Indoor Environments. The First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments (MELT), 37–42.

    Google Scholar 

  • Vullers, R., Schaijk, R., Visser, H., Penders, J., & Hoof, C. (2010). Energy Harvesting for Autonomous Wireless Sensor Networks. Solid-State Circuits Magazine, 22 (2), 29–38.

    Article  Google Scholar 

  • Wang, A., Cho, S., Sodini, C., & Chandrakasan, A. (2001). Energy Efficient Modulation and MAC for Asymmetric RF Microsensor Systems. The 2001 international Symposium on Low Power Electronics and Design (ISLPED) (pp. 106–111). Huntington Beach, CA: ACM.

    Google Scholar 

  • Wang, C., Sohraby, K., Hu, Y., Li, B., & Tang, W. (2005). Issues of Transport Control Protocols for Wireless Sensor Networks. International Conference on Communications, Circuits and Systems. 1, pp. 422–426. Honk Kong, China: IEEE.

    Google Scholar 

  • Wang, Q., & Balasingham, I. (2010). Wireless Sensor Networks - An Introduction. In Y. K. Tan, Wireless Sensor Networks: Application-Centric Design (pp. 1–13). InTech.

    Google Scholar 

  • Wu, Y. C., Chaudhari, Q., & Serpedin, E. (2011). Clock Synchronization of Wireless Sensor Networks. Signal Processing Magazine, 28 (1), 124–138.

    Article  Google Scholar 

  • Xu, B., Vafaee, F., & Wolfson, O. (2009). In-Network Query Processing in Mobile P2P Databases. 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS) (pp. 207–216). Seattle, WA: ACM.

    Google Scholar 

  • Ye, W., Heidemann, J., & Estrin, D. (2002). An Energy-Efficient MAC Protocol for Wireless Sensor Networks. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). 3, pp. 1567–1576. New York: IEEE.

    Google Scholar 

  • Younis, M., & Akkaya, K. (2008). Strategies and Techniques for Node Placement in Wireless Sensor Networks: A Survey. Ad Hoc Networks, 6 (4), 621–655.

    Article  Google Scholar 

  • Zheng, T., Radhakrishnan, S., & Sarangan, V. (2005). PMAC: An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks. 19th IEEE International Parallel and Distributed Processing Symposium. Denver, CO: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam Mahmoud Ahmad Fahmy .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Fahmy, H.M.A. (2016). Protocol Stack of WSNs. In: Wireless Sensor Networks. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0412-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0412-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0411-7

  • Online ISBN: 978-981-10-0412-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics