Skip to main content

Priming of Plant Defense and Plant Growth in Disease-Challenged Crops Using Microbial Consortia

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

Increasing concern regarding the significant environmental footprint due to excessive use of chemicals in agriculture has led to emphasis on sustainable and environmentally friendly agricultural practices. Microorganisms facilitate and catalyze the transformations of essential major and minor elements in biogeochemical cycles and, hence, represent a dynamic constituent of our environment. Their role as producers of allelochemicals and signaling molecules has been well investigated, but the complexity of interactions involved has made them lag behind in their race as biocontrol agents, as compared with chemical pesticides. Plant-microbe interactions represent one of the most investigated and intriguing areas of research, and their role in priming or as producers of signaling molecules such as jasmonic acid and defense enzymes or their role in eliciting various modes of resistance is gaining new dimensions in the last few years. Priming is known to aid in acclimation to various types of abiotic and biotic stress in microorganisms, and gaining insights into the mechanisms and metabolites involved represents another challenging area. This compilation provides an overview of the recent developments in this field, highlighting the significance of the findings toward developing a “greener” agricultural scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad S, Van Hulten M, Martin J et al (2011) Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Plant Cell Environ 34:1191–1206

    CAS  PubMed  Google Scholar 

  • Ahn IP, Lee SW, Suh SC (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol Plant Microbe Interact 20:759–768

    CAS  PubMed  Google Scholar 

  • Aime’ S, Alabouvette C, Steinberg C, Olivain C (2013) The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol Plant Microbe Interact 26:918–926

    PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    CAS  PubMed  Google Scholar 

  • Babu S, Bidyarani N, Chopra P et al (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot challenged cotton crop. Eur J Plant Pathol 142:345–362

    CAS  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Loon LCV (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Bakker PAHM, Ran LX, Mercado-Blanco J (2014) Rhizobacterial salicylate production provokes headaches! Plant Soil. doi:10.1007/s11104-014-2102-0

    Article  Google Scholar 

  • Ballesteros-Almanza L, Atamirano-Hernandez J, Peña- Cabriales JJ et al (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 4:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    PubMed  Google Scholar 

  • Bengtsson T, Weighill D, Proux-Wéra E et al (2014) Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genom 15:315

    Google Scholar 

  • Benhamou N, Fortin JA, Hamel C et al (1994) Resistance responses of mycorrhizal Ri TDNA- transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    CAS  Google Scholar 

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167(2):141–152

    PubMed  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations—making metabolism move. Curr Opin Plant Biol 1:267–274

    CAS  PubMed  Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 52:471–475

    Google Scholar 

  • Burketova L, Trda L, Ott PG, Valentova O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv http://dx.doi.org/10.1016/j.biotechadv.2015.01.004

  • Cahill JF, Elle E, Smith GR, Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:1791–1801

    PubMed  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A et al (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 21:244–259

    CAS  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    CAS  PubMed  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    CAS  PubMed  Google Scholar 

  • Conrath U, Becker GJM, Flors V et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    CAS  PubMed  Google Scholar 

  • Cools HJ, Ishii H (2002) Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol Mol Plant Pathol 61:1273–1280

    Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Dorantes-Acosta AE, Sanchez-Hernandez CV, Arteaga-Vazquez MA (2012) Biotic stress in plants: life lessons from your parents and grandparents. Front Genet 3:256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dukare AS, Prasanna R, Dubey SC et al (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot 30:436–442

    Google Scholar 

  • Duque AS, Farinha AP, da Silva AB et al (2013) Abioticstress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K, Leslie C (eds) Abiotic stress-plant responses and applications in agriculture. InTech, Rijeka, pp 3–23

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Google Scholar 

  • Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci http://dx.doi.org/10.1016/j.sjbs.2015.04.019

  • Elliott M, Shamoun SF, Sumampong G et al (2009) Evaluation of several commercial biocontrol products on European and North American populations of Phytophthora ramorum. Biocontrol Sci Tech 19:1007–1021

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E et al (eds) Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:U281–U284

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Goettel MS, Koike M, Kim JJ et al (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    CAS  PubMed  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J Microbiol Biotechnol. doi:10.1007/s1127-010-0572-7

    Article  Google Scholar 

  • Hamiduzzaman MM, Jakab G, Barnavon L et al (2005) β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant Microbe Interact 18:819–829

    CAS  PubMed  Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D et al (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • He CY, Wolyn DJ (2005) Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f. sp. asparagi. Plant Pathol 54:227–232

    CAS  Google Scholar 

  • He CY, Hsiang T, Wolyn DJ (2002) Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis by non-pathogenic strains of Fusarium oxysporum. Plant Pathol 51:225–230

    Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002

    Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    CAS  PubMed  Google Scholar 

  • Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714

    Google Scholar 

  • Jaber LR, Vidal S (2010) Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol Entomol 35:25–36

    Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32:388–398

    CAS  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    CAS  Google Scholar 

  • Jallow MFA, Dugassa-Gobina D, Vidal S (2004) Indirect interaction between an unspecialized endophytic fungus and a polyphagous moth. Basic Appl Ecol 5:183–191

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Justyna PG, Ewa K (2013) Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiol Plant 35:1735–1748

    CAS  Google Scholar 

  • Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    CAS  PubMed  Google Scholar 

  • Kempel A, Brandl R, Schädler M et al (2009) Symbiotic soil microorganisms as players in above ground plant-herbivore interactions-the role of rhizobia. Oikos 118:634–640

    Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldań A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravacaa F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    CAS  Google Scholar 

  • Koricheva J, Ganje AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    PubMed  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  PubMed  Google Scholar 

  • Lucas JA, Solano BR, Montes F et al (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114:404–410

    Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Mañero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53

    CAS  PubMed  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    CAS  PubMed  Google Scholar 

  • Manjunath M, Prasanna R, Nain L et al (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Protect 43:666–677

    Google Scholar 

  • Marimuthu S, Ramamoorthy V, Samiyappan R, Subbian P (2013) Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. J Phytopathol 161:405–411

    Google Scholar 

  • Martıńez-Medina A, Fernandez I, Sanchez-Guzman MJ et al (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    PubMed  PubMed Central  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb SD, Defago G (1998) Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622

    CAS  PubMed  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Mur LAJ, Brown IR, Darby RM et al (1996) Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J 9:559–571

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcoń-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E et al (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Jung SC, Lopez-Raez JA, Azcon-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress. The role of plant defence mechanisms. In: Kotlai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 193–207

    Google Scholar 

  • Prasanna R, Rana A, Chaudhary V et al (2012) Cyanobacteria-PGPR interactions for effective nutrient and pest management strategies in agriculture. In: Satyanarayana T et al (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 73–95

    Google Scholar 

  • Prasanna R, Babu S, Rana A et al (2013a) Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence. Exp Agric 49:416–434

    Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V et al (2013b) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Google Scholar 

  • Prasanna R, Babu S, Bidyarani N et al (2015a) Exploring the potential of cyanobacteria as plant growth promoting and biocontrol agents in cotton. Exp Agric 51:42–65

    Google Scholar 

  • Prasanna R, Bidyarani N, Babu S et al (2015b) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1:995807

    Google Scholar 

  • Prats E, Bazzalo ME, Leon A, Jorrin JV (2003) Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica 132:321–329

    CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710

    CAS  PubMed  Google Scholar 

  • Ran LX, Van Loon LC, Bakker PAHM (2005) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355

    CAS  PubMed  Google Scholar 

  • Raps A, Vidal S (1998) Indirect effects of an unspecialized endophytic fungus on specialized plant – herbivorous insect interactions. Oecologia 114:541–547

    CAS  PubMed  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    CAS  PubMed  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    PubMed  Google Scholar 

  • Roylawar P, Panda S, Kamble A (2015) Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiol Mol Plant Pathol 91:88–95

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswaralu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes anti oxidant status and plant growth of maize under drought stress. Plant Growth Regul. doi:10.1007/s10725-010-9479-4

    Article  Google Scholar 

  • Sang MK, Kim EN, Han GD et al (2014) Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 104:834–842

    CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Cur Genomics 12:30–43

    CAS  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena B et al (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. J Appl Entomol 132:469–479

    Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    CAS  Google Scholar 

  • Sarma BK, Singh HB (2014) Harnessing transgenerational plant immunity. Curr Sci 107:1941–1942

    Google Scholar 

  • Sarma BK, Singh DP, Mehta S, Singh HB (2002) Plant growth promoting rhizobacteria-elicited alterations in phenolic profile of chickpea (Cicer arietinum) infected by Sclerotium rolfsii. J Phytopathol 150:277–282

    CAS  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficiency. Soil Biol Biochem 87:25–33

    CAS  Google Scholar 

  • Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 275–316

    Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    CAS  PubMed  Google Scholar 

  • Selvaraj N, Ramadass A, Amalraj RS et al (2014) Molecular profiling of systemic acquired resistance (SAR)-responsive transcripts in sugarcane challenged with Colletotrichum falcatum. Appl Biochem Biotechnol 174:2839–2850

    CAS  PubMed  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK et al (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    CAS  Google Scholar 

  • Singh A, Jain A, Sarma BK et al (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360

    CAS  PubMed  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    CAS  PubMed  Google Scholar 

  • Slaughter A, Daniel X, Flors V et al (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    CAS  PubMed  Google Scholar 

  • Song YY, Ye M, Li CY et al (2013) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39:1036–1044

    PubMed  Google Scholar 

  • Spaepen S, Boddelaere S, Croonenborghs A, Vanderleyden J (2008) Effect of Azospirillum brasiliense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    CAS  Google Scholar 

  • Stajner D, Kevresa S, Gasic O, Mimica-Dukic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    CAS  PubMed  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086. doi:10.1371/journal.pone.0096086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Mauch‐Mani B (2004) β‐amino‐butyric acid‐induced resistance against necrotrophic pathogens is based on ABA‐dependent priming for callose. Plant J 38:119–130

    CAS  PubMed  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    CAS  PubMed  Google Scholar 

  • Tuteja N, Peter Singh L, Gill SS et al (2012) Salinity stress: a major constraint in crop production. In: Tuteja et al (eds) Improving crop resistance to abiotic stress. Wiley, New York, pp 71–96

    Google Scholar 

  • Van der Ent S, Verhagen BWM, Van Doorn R et al (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    PubMed  PubMed Central  Google Scholar 

  • Van Der Wolf J, De Boer SH (2015) Phytopathogenic bacteria. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 65–77

    Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P et al (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930

    PubMed  Google Scholar 

  • Van Peer R, Niemann GN, Schippers (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt in carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Vanezuela-Soto JH, Estrada-Hernandez MG, Ibarra-Laclette E, Delano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth promoting Bacillus subtilis retards whitefly Bemisia tabaci. Planta 231:397–410

    Google Scholar 

  • Vannette RL, Hunter MD (2009) Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agric For Entomol 11:351–358

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acid 35:753–759

    CAS  Google Scholar 

  • Vidal S (1996) Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungus. Entomol Exp Appl 80:272–274

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    CAS  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D et al (2013) Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    CAS  Google Scholar 

  • Walker V, Couillerot O, Felten AV et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565. doi:10.1371/journal.pone.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooley SC, Paine TD (2011) Infection by mycorrhizal fungi increases natural enemy abundance on tobacco (Nicotiana rustica). Environ Entomol 40(1):36–41

    PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Xu XM, Salama N, Jeffries P, Jeger MJ (2010) Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of a biocontrol agent. Phytopathology 100:814–821

    PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Yi HS, Yang JW, Choi HK et al (2012) Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnol Rep 6:373–380

    Google Scholar 

  • Yim W, Woo S, Kim K, Sa T (2012) Regulation of ethylene emission in tomato (Lycopersicon esculentum mill.) and red pepper (Capsicum annuum l.) inoculated with ACC deaminase producing Methylobacterium spp. Korean J Soil Sci Fertil 45(1):37–42

    CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    CAS  PubMed  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas bacteria. Plant Physiol 62:304–318

    Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhang H, Xie X, Kim MS et al (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    CAS  PubMed  Google Scholar 

  • Zhang D, Liu M, Tang M et al (2015) Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. Plant Sci 237:24–32

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kumar, M., Karthikeyan, N., Prasanna, R. (2016). Priming of Plant Defense and Plant Growth in Disease-Challenged Crops Using Microbial Consortia. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_4

Download citation

Publish with us

Policies and ethics