Skip to main content

AM Fungal Effect on the Growth of Selective Dicot and Monocot Plants

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

A mycorrhiza (fungus root) is a symbiotic association of a fungus and the roots of a vascular plant. In this association, the fungus colonizes the host plant’s roots, either intracellularly as in arbuscular mycorrhizal fungi or extracellularly as in ectomycorrhizal fungi. Arbuscular mycorrhizal (AM) fungi are ubiquitous in soil habitats and form beneficial symbiosis with the roots of angiosperms. The present work was focused on the arbuscular mycorrhizal status of selective dicot plants such as chickpea (Cicer arietinum L.), cowpea (Vigna unguiculata L.) and green pea (Pisum sativum L.) plants and selective monocot plants such as Triticum aestivum (L.) and Pennisetum glaucum and its beneficial effect on the efficiency of morphological and physiological changes in such plants grown under greenhouse condition. The investigation result reported that the fresh and dry weight, shoot and root length and chlorophyll and carotenoid content in the AM fungi-treated plants increased significantly compared to control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LK, Robson AD (1982) Infectivity of vesicular arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049–1959

    Google Scholar 

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of arbuscular mycorrhizae. Agric Ecosyst Environ 35:121–150

    Google Scholar 

  • Abdulla ME, Abdul-Fattah GM (2000) Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease. Mycorrhiza 10:29–35

    Google Scholar 

  • Al-Raddad A (1991) Distribution of different Glomus species in rainfed areas in Jordan. Dirasat 20:165–182

    Google Scholar 

  • Al-Raddad A (1995) Response of bean, broad bean and chickpea plants to inoculation with Glomus species. Sci Hortic 46:195–200

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avis TJ, Gravel V, Antourn H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40(7):1733–1740

    CAS  Google Scholar 

  • Azcon-Aquilar R, Barea JM (1982) New Phytol 92:533–559 cited in Parameswaran P, Agustine B (1988) Distribution and ecology of a VAM in a scrub jungle. In: Mahadevan A, Raman N, Natarajan K (eds) Mycorrhizae for green Asia. First Asian conference on mycorrhizae. University of Madras, pp 91–94

    Google Scholar 

  • Beena KR, Raviraja NS, Arun AB, Sridhar KR (2000) Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of the Western coast of India. Curr Sci 79:1459–1466

    CAS  Google Scholar 

  • Bergan M, Koske (1981) Trans Br Mycol Soc 83:157–158. Cited in Parameswaran P, Agustine B (1988) Distribution and ecology of a VAM in a scrub jungle. In: Mahadevan A, Raman N, Natarajan K (eds) Mycorrhizae for green Asia. First Asian conference on mycorrhizae. University of Madras, pp 91–94

    Google Scholar 

  • Cardoso IM, Kuyper (2006) Mycorrhiza and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Google Scholar 

  • Chaurasia B, Khare PK (2005) Hordeum vulgare: a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. J Appl Ecol Environ Res 4(1):45–53

    Google Scholar 

  • Cordell CE, Jeffey HO, Donald HM (1987) Mycorrhizae nursery management for improved seedling quality and field performance. Meeting the challenge of nineties: proceedings inter mountain forest nursery association. pp 105–115

    Google Scholar 

  • Deepadevi M, Basu MJ, Santhaguru K (2010) Response of Sorghum bicolor (L.) Moench to dual inoculation with Glomus fasciculatum and Herbaspirillum seropedicae. Gen Appl Plant Physiol 36(34):176–182

    CAS  Google Scholar 

  • Deshmukh AM, Khobragade RM, Dixit Jaipur PP (2007) Handbook of biofertilizers and biopesticides/edited. Oxford Book Company, xviii, p 308

    Google Scholar 

  • Duncan DB (1995) Multiple range and multiple f-tests. Biometrics 11:1–42

    Google Scholar 

  • Fidelibus MW, Martin CA, Wright GC, Stutz JC (2000) Effect of arbuscular mycorrhizal (AM) fungal communities on growth of ‘Volkamer’ lemon in continually moist or periodically dry soil. Sci Hortic 84:127–140

    Google Scholar 

  • Fries LLM, Pacovskey RS, Safir GR, Kaminski J (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103:162–171

    CAS  Google Scholar 

  • George E, Marschner H, Jackobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257–270

    Google Scholar 

  • Gerdemann JW (1968) Vesicular arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted in soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gerdemann JW, Trappe JM (1974) The endogonaceae in the pacific north-west. Mycologia Memoir 5:76

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques to measure vesicular-arbuscular infections in roots. New Phytol 84:489–500

    Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought-stressed alfalfa. Plant and Soil 192:261–268

    CAS  Google Scholar 

  • Gopinathan S, Nagarajan N, Raman N (1991) Survey of endomycorrhizal spores in the forest of Servarayan Hills of Tamil Nadu, India. In: Soeriannegara I, Supriyanto (eds) Proceedings of the second Asian conference on mycorrhiza, (Abstr.), p 274

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular- arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    CAS  Google Scholar 

  • Jalaluddin M (2005) Effect of inoculation with VAM fungi and Bradyrhizobium on growth and yield of soybean in Sindh. Pak J Bot 37(1):169–173

    Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhiza symbiosis transport properties and regulatory roles. Plant Cell Environ 30(3):310–322

    CAS  PubMed  Google Scholar 

  • Jeffries (1987) Use of mycorrhiza in agriculture. Crit Rev Biotechnol 5:319–357

    Google Scholar 

  • Johri BN, Mathew J (1989) Strategies for mass production of Vesicular arbuscular mycorrhizal fungi. In: Bilgrami KS (ed) Plant microbe interactions. Narendra Publication House, Delhi, pp 293–303

    Google Scholar 

  • Kapulnik Y, Koshnir U (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on Vesicular-arbuscular mycorrhizal fungi. Eupytica 56:27–36

    Google Scholar 

  • Khade SW, Rodrigues BF (2003) Occurrence of arbuscular mycorrhizal fungi in tree species from Western Ghats of Goa, India. J Trop For Sci 15:320–331

    Google Scholar 

  • Khaliel AS (1988) Incidence of VAM in some desert plants and correlation with edaphic factors. In: Mahadevan A, Raman N, Natarajan K (eds) Mycorrhizae for Green Asia. First Asian conference on mycorrhizae. University of Madras, Madras, pp 56–59

    Google Scholar 

  • Khalil S, Loynacham TE, McNabb HS Jr (1992) Colonization of Soybean by mycorrhizal fungi and spore population in Iowa soils. Agron J 84:832–836

    Google Scholar 

  • Koske RE, Polson WR (1984) Bioscience 34:420–424

    Google Scholar 

  • Krishna KR, Shetty KG, Dart PJ, Andrews DJ (2000) Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant and Soil 85(1):113–125

    Google Scholar 

  • Lin XG, Hao WY, Wo TH (1993) The beneficial effects of dual inoculation of vesicular- arbuscular mycorrhizae and Rhizobium on growth of white clover. Tropiculture 11:151–154

    CAS  Google Scholar 

  • Lukiwat DR, Simanungkalit RDM (2002) Dry matter yield, N and P uptake of soybean with Glomus manihotis and Bradyrhizobium japonicum. In timetable of international meeting on direct application of phosphorus rock and related technology–latest developments and practical experiences. International fertilizer development center muscle shoals (IFDC) USA Kuala Lumpur, Malaysia, 16–20 July

    Google Scholar 

  • Mahesh V (2002) Studies on arbuscular mycorrhizal fungi associated with some grasses in industrially polluted soils and its influence on effluent tolerance of Sorghum bicolor (L.) Moench., Ph.D. Thesis, Bharathidasan University, Tiruchirapalli, Tamil Nadu, pp 155

    Google Scholar 

  • Manimegalai V, Selvaraj T, Ambikapathy V (2011) Studies on isolation and identification of VAM fungi in Solanum viarum dunal of medicinal plants. Adv Appl Sci Res 2(4):621–628

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    CAS  PubMed  Google Scholar 

  • Marx DH (1977) Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 23:217–223

    CAS  PubMed  Google Scholar 

  • Mathew MM, Hameed SMS (2002) Influence of microbial inoculants and phosphorus levels on the root characters, growth and yield of vegetable cowpea (Vigna unguiculata subsp. Sesquipedalis (L.) Verdcourt). J Trop Agric 40(1/2):71–73

    Google Scholar 

  • Mosse B (1981) Vesicular-Arbuscular Mycorrhiza research for tropical agriculture. Hawaii Institute of Tropical Agriculture and Human Resources, Univ. of Hawaii, Research Bulletin. 194. p 82

    Google Scholar 

  • Mudalagiriyappan CA, Agasimani KK, Veeranna S, Najappa HV (1997) Nutrient recovery and balance sheet of nitrogen and phosphorus as influenced by sources of phosphate solubilizers and phosphate on groundnut. Mysore J Bot 32:143–148

    Google Scholar 

  • Murugan R (2002) Studies on arbuscularmycorrhizal fungi associated with Cichorium intybus L., Ph.D. Thesis, Bharathidasan University,Tiruchirapalli, Tamil Nadu, pp 104

    Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and symbiotic nitrogen- fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139

    Google Scholar 

  • Nicolson TH, Schenck NC (1979) Endogenous mycorrhizal endophytes from florida. Mycologia 71:178–190

    Google Scholar 

  • Niranjan R, Shukla R, Pareek R, Rao VM (2002) Dual inoculation effect of Rhizobium (cowpea miscellany) and VAM fungi on growth, nodulation and nitrogen fixation in Prosopis cineraria. Bharatpur, India. Phytological Society. J Phytol Res 15(2):149–153

    Google Scholar 

  • Nirmala P, Selvaraj T (2005) Abundance of arbuscular mycorrhizal fungi in Ipomoea in coastal sand dune soils of South coast of Tamil Nadu. J Ecobiol 18:321–325

    Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    CAS  Google Scholar 

  • Ouimet R, Camire C, Furlan V (1996) Effect of soil base saturation and endomycorrhization on growth and nutrient status of sugar maple seedlings. Can J Soil Sci 76(2):109–115

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasites and vesicular-arbuscular mycorrhizal fungi for the rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Rajasekaran S, Nagarajan SM (2005) Effect of dual inoculation (AM fungi and Rhizobium) on chlorophyll content of Vigna unguiculata (L.)Walp.Var.Pusa. 151. Mycorrhiza News 17(1):10–11

    Google Scholar 

  • Reddy BN, Sreevani A, Raghavender CR (2006) Association of AM fungi in three solanaceous vegetable crops. J Mycol Plant Pathol 36(1):52–56

    Google Scholar 

  • Ridley SM (1977) Interaction of chloroplast with inhibitors. Induction of chlorosis by diuron during prolonged illumination in vitro. Plant Physiol 59:724–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohyadi A, Smith FA, Murray RS, Smith SE (2004) Effects of pH on mycorrhizal colonization and nutrient uptake in cowpea under conditions that minimize confounding effects of elevated available aluminium. Plant Soil 260(1/2):283–290

    CAS  Google Scholar 

  • Sambandan K (1995) Investigations of vesicular – arbuscular mycorrhizal associations of Neem (Azadirachta indica). Ph.D. thesis, University of Madras, Chennai

    Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate form soil by Endogone mycorrhizas. Nature (London) 233:278–279

    CAS  PubMed  Google Scholar 

  • Sankar K (2002) Phytochemical investigations in Wedelia chinensis as influenced by arbuscular mycorrhizal fungi, Ph.D. thesis, Bharathidasan University, Tiruchirapalli. p 119

    Google Scholar 

  • Santhaguru K, Sadhana B (2000) Vesicular-Arbuscular Mycorrhizal status of Acacia species from Madurai district. Ann For 8(2):266–269

    Google Scholar 

  • Satyawathi S, Suman K, Padma V (2005) Effect of bioinoculants on biomass productivity under agroforestry systems. New Delhi, India. Indian J Biotechnol 4(1):156–160

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VAM fungi. Univ. of Florida, Gainesville, pp 245–286

    Google Scholar 

  • Schenck NC, Perez Y (1987) Manual for the identification of VA mycorrhizal fungi, 2nd edn. In-Fungi (INVAM), University of Florida, Gainesville

    Google Scholar 

  • Selvaraj T (1989) Studies on arbuscular mycorrhizae of some crop and medicinal plants, Ph.D. thesis, Bharathidasan University, Tiruchirapalli, Tamil Nadu, p 120

    Google Scholar 

  • Setua GC, Kar R, Ghosh JK, Das NK, Saratchandra B (1999) Response of direct inoculation of VAM on growth, leaf yield and phosphorus uptake in mulberry (Morus alba). Indian J Agric Sci 69:444–448

    Google Scholar 

  • Sidhu OP, Behl HM (1997) Response of three Glomus species on growth of Prosopis juliflora Swartz, at high pH levels. Symbiosis 23(1):23–34

    Google Scholar 

  • Simpson D, Daft M (1990) Spore production and mycorrhizal development in various tropical hosts infected with Glomus clarum. Plant Soil 47:17–26

    Google Scholar 

  • Singh S (2001) Role of mycorrhiza in field inoculation, fungal succession, and effect of climatic and edaphic factors on tree plantations. Mycorrhiza News 12(4):2–12

    Google Scholar 

  • Singh AP, Sumit C, Tripathi MK, Singh S (2004) Growth and yield of green gram (Vigna radiata (L.)Wilczek) as influenced by biofertilizers and phosphorus application. Ann Biol 20(2):227–232

    Google Scholar 

  • Sitaramaiah K, Rahulkhanna T, Trimuthulu N (1998) Effect of Glomus fasciculatum on growth and chemical composition of maize. Soil Microbes Plant Pathol 64:34–37

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, p 605

    Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1988) Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum. Plant and Soil 106:289–290

    Google Scholar 

  • Sundar SK, Palavesam P, Parthipan B (2010) AM fungal diversity in selected medicinal plants of Kanyakumari district, Tamil Nadu, India. Indian J Microbiol 51(3):259–265

    Google Scholar 

  • Suresh K, Selvaraj T (2006) Influence of edaphic factors on arbuscular mycorrhizal fungal spore population and root colonization in Zea mays L. In: Proceedings of national symposium of recent trends in biological research, p 45

    Google Scholar 

  • Tabassum Y, Tanvir B, Farrukh H (2011) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afr J Biotechnol 10(43):8593–8598

    Google Scholar 

  • Thakur AK, Panwar JDS (1995) Effect of Rhizobium- arbuscular mycorrhiza interaction on growth and yield in mungbean (Vigna radiata (L.) Wilczek) under field conditions. Indian Physiol J Plant 37(1):62–65

    Google Scholar 

  • Trappe JM (1982) Synoptic key to the genera and species of Zygomycetous mycorrhizal fungi. Phytopathology 72:1102–1108

    Google Scholar 

  • Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22:331–359

    Google Scholar 

  • Udaiyan K, Sugavanam V (1996) Interaction of arbuscular mycorrhizal fungi and Frankia spp. On Growth and nutrient uptake in Casuarina equisetifolia Forst. Mycorrhizal: biofertilizers for the future, pp 230–237

    Google Scholar 

  • Wenzel WW, Lombi E, Anriano CC (1999) Biogeochemical processes in the rhizosphere- role of phytoremediation of metal polluted sites. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Heidelberg, pp 273–303

    Google Scholar 

  • Xavier LJC, Germida JJ (2000) Response of spring wheat cultivars to Glomus clarum NT4 in a P-deficient soil containing arbuscular mycorrhizal fungi. J Soil Sci 78(4):481–484

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19(1):15–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sadhana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sadhana, B., Monica, P.K., Siva Sankari, S. (2016). AM Fungal Effect on the Growth of Selective Dicot and Monocot Plants. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_11

Download citation

Publish with us

Policies and ethics