Skip to main content

Research on Evolution Mechanism in Different-Structure Module Redundancy Fault-Tolerant System

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 575))

Abstract

With the dramatic increase of circuit scale and the harsh environment, the reliability of the system has become the great hidden danger. Triple different-structure modular redundant system based on evolution mechanism shows good fault tolerant ability. How to enhance the efficiency and diversity of the evolution generation module has become the key issue which can ensure the system fault tolerant. This article puts forward two-stage mutation evolution strategy (TMES) and interactive two-stage mutation evolution strategy (ITMES) based on improving virtual reconfigurable architecture platform to evolve combination logical circuit on the fault-tolerant system with different-structure redundancy module. The efficiency of the proposed methodology is tested with the evolutions of a 2-bit multipliers, and a 3-bit multipliers, and a 3-bit full adders. The obtained results demonstrate the effectiveness of the scheme on generation circuit diversity and evolution efficiency.

Foundation item: Projects (HBSKFMS2014009) supported by the Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rollins, N., Wirthlin, M., Caffrey, M., et al.: Evaluating TMR techniques in the presence of single event upsets. In: Proceedings of the Conference on Military and Aerospace Programmable Logic Devices (MAPLD), Washington, DC, p. 63 (2003)

    Google Scholar 

  2. Carmichael, C.: Triple module redundancy design techniques for virtex FPGAs. xAPPl97(v1.0). Xilinx Corp., San Jose (2001)

    Google Scholar 

  3. Ping, J., Wang, Y., Kong, D., Yao, R.: Research on technology of different-structure system based on evolvable hardware. J. Chin. Compute Syst. 30(11), 2290–2293 (2009)

    Google Scholar 

  4. Pratt, B., Caffrey, M., Carroll, J.F., et al.: Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Trans. Nucl. Sci. 55(4), 2274–2280 (2008)

    Article  Google Scholar 

  5. Lin, Y., Luo, W., Wang, X.: The selective evolution redundancy of hardware circuit. J. USTC 36(5), 523–529 (2006)

    Google Scholar 

  6. Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H., et al.: Real-world applications of analog and digital evolvable hardware. IEEE Trans. Evol. Comput. 3(3), 220–235 (1999)

    Article  Google Scholar 

  7. Gao, G.J., Wang, Y.R., Yao, R.: Research on redundancy and tolerance of system with different structures. Transducer Microsyst. Technol. 26(10), 25–28 (2007)

    Google Scholar 

  8. Yao, R., Wang, Y., Yu, S., Cheng, Z.: Design and experiments of enhanced fault–tolerant triple-module redundancy systems capable of online self-repairing. Acta Electro. Sin. 38(1), 177–183 (2010)

    Google Scholar 

  9. Sekanina, L.: Virtual reconfigurable circuits for real-world applications of evolvable hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 186–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Glette, K., Torresen, J.: A flexible on-chip evolution system implemented on a Xilinx virtex-II pro device. In: Moreno, J., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 66–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Wang, J., Chen, Q.S., Lee, C.H.: Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware. IET Comput. Digital Tech. 2(5), 386–400 (2008)

    Article  MathSciNet  Google Scholar 

  12. Li, K., Liang, J., Zhang, W., et al.: Optimization algorithm for complicated circuit based on GEP. Comput. Eng. Appl. 44(18), 83–86 (2008)

    Google Scholar 

  13. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Banzhaf, W., Fogarty, T.C., Langdon, W.B., Miller, J., Nordin, P., Poli, R. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Oltean, M., Grosan, C.: Evolving digital circuits using multi expression programming. In: Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH2004) (2004)

    Google Scholar 

  15. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

    Article  Google Scholar 

  16. Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Vassilev, V.K., Miller, J.F.: Scalability problems of digital circuit evolution evolvability and efficient designs. In: Proceedings of the Second Conference on Evolvable Hardware (2000)

    Google Scholar 

  18. Gordon, T.G.W., Bentley, P.J.: Towards development in evolvable hardware. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (EH 2002), pp. 241–250 (2002)

    Google Scholar 

  19. Lee, J., Sitte, J.: Issues in the scalability of gate-level morphogenetic evolvable hardware. In: Recent Advances in Artificial Life, Advances in Natural Computation, vol. 3, pp. 145–158. World Scientific, Singapore (2005)

    Google Scholar 

  20. Tufte, G.: Discovery and investigation of inherent scalability in developmental genomes. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 189–200. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Wang, J., Lee, C.H.: Virtual reconfigurable architecture for evolving combinational logic circuits. J. Cent. South. Univ. 21, 1862–1870 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Yang, X., Li, Y., Fang, C., Nie, C., Ni, F. (2016). Research on Evolution Mechanism in Different-Structure Module Redundancy Fault-Tolerant System. In: Li, K., Li, J., Liu, Y., Castiglione, A. (eds) Computational Intelligence and Intelligent Systems. ISICA 2015. Communications in Computer and Information Science, vol 575. Springer, Singapore. https://doi.org/10.1007/978-981-10-0356-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0356-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0355-4

  • Online ISBN: 978-981-10-0356-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics