Skip to main content

Engineered Nanomaterials and Occupational Allergy

  • Chapter
  • First Online:
Allergy and Immunotoxicology in Occupational Health

Abstract

The expanding demand for highly performing devices and products has prompted the development of innovative nanosized materials. This fact, along with the uncertain efficacy of protective equipment available for the nanosized particles, poses concern about the risk of becoming sensitised in the occupational setting. Actually, such a phenomenon can also affect the general population given the unavoidable environmental contamination. At the same time, studies on the physiopathology of the allergy demonstrated that the lack of prevention and treatment can result in invalidating diseases that, in case of professional aetiology, might imply removal from job and compensation. The potential role of nanomaterials in the development and exacerbation of occupational allergy is being disclosed by recent experimental investigations in cellular and animal models. Moreover, first emerging data from professional human exposure are adding new information to the complex puzzled picture of nanotoxicology.

Most importantly, a deeper knowledge on the role of nanomaterials in the aetiology of the allergic diseases will allow the implementation of risk assessment and preventive measures for nanosafety at the workplace. Original articles retrieved from PubMed and Google searches using the keywords, occupational, exposure, workers, nanoparticles, nanomaterials, allergy as well as congress proceedings, institutional reports and unpublished data from research laboratories involved in this field have been considered as a source of updated information to write this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slavin R. Occupational rhinitis. Immunol Allergy Clin N Am. 1992;12:769.

    Google Scholar 

  2. Slavin RG. Update on occupational rhinitis and asthma. Allergy Asthma Proc 31:437–43. doi:10.2500/aap.2010.31.3379.

  3. Di Giampaolo L, Cavallucci E, Braga M, Renzetti A, Schiavone C, Quecchia C, et al. The persistence of allergen exposure favors pulmonary function decline in workers with allergic occupational asthma. Int Arch Occup Environ Health. 2012;85:181–8. doi:10.1007/s00420-011-0653-4.

    Article  PubMed  Google Scholar 

  4. ISO/TR 27628. Workplace atmospheres. Ultrafine, nanoparticle and nano-structured aerosols. Inhalation exposure characterization and assessment, 2007. n.d.

    Google Scholar 

  5. http://www.cdc.gov/niosh/topics/nanotech/. n.d.

  6. Kazula S, Balderhaar J, Orthen B, Onnhert B, Jankoswka E, Rosell MG, Tanarro C, Tejeodor JZA. Literature review – workplace exposure to nanoparticles. OSHA – Eur Agency Saf Heal Work. n.d.; https://os.

    Google Scholar 

  7. Tsai, SJ, Ada, E, Ellenbecker M. Airborne nanoparticle exposures associated with the manual handling of nanoaluminia in fume hood. 3rd international symposium on nanotechnology, occupational environmental health, Taipei, Taiwan, 2007.

    Google Scholar 

  8. Bekker C, Brouwer DH, Tielemans E, Pronk A. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg. 2013;57:314–27. doi:10.1093/annhyg/mes072.

    Article  CAS  PubMed  Google Scholar 

  9. Tiede K, Tear SP, David H, Boxall ABA. Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 2009;43:3335–43. doi:10.1016/j.watres.2009.04.045.

    Article  CAS  PubMed  Google Scholar 

  10. Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg. 2008;5:380–9. doi:10.1080/15459620802050053.

    Article  CAS  PubMed  Google Scholar 

  11. Wichmann G, Franck U, Herbarth O, Rehwagen M, Dietz A, Massolo L, et al. Different immunomodulatory effects associated with sub-micrometer particles in ambient air from rural, urban and industrial areas. Toxicology. 2009;257:127–36. doi:10.1016/j.tox.2008.12.024.

    Article  CAS  PubMed  Google Scholar 

  12. Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: a cross-sectional study. J Breath Res. 2015;9:036008. doi:10.1088/1752-7155/9/3/036008.

    Article  PubMed  Google Scholar 

  13. Petrarca C, Clemente E, Di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R, et al. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. J Immunol Res. 2014;2014:295092. doi:10.1155/2014/295092.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu M, Li Y, Shi J, Feng W, Nie G, Zhao Y. Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small. 2012;8:404–12. doi:10.1002/smll.201101708.

    Article  CAS  PubMed  Google Scholar 

  15. Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, et al. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci. 2011;122:489–501. doi:10.1093/toxsci/kfr124.

    Article  CAS  PubMed  Google Scholar 

  16. Sabbioni E, Fortaner S, Farina M, Del Torchio R, Petrarca C, Bernardini G, et al. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts. Nanotoxicology. 2014;8:88–99. doi:10.3109/17435390.2012.752051.

    Article  CAS  PubMed  Google Scholar 

  17. Ilves M, Palomäki J, Vippola M, Lehto M, Savolainen K, Savinko T, et al. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol. 2014;11:38. doi:10.1186/s12989-014-0038-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freitas DN, Martinolich AJ, Amaris ZN, Wheeler KE. Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles. J Nanobiotechnol. 2016;14:7. doi:10.1186/s12951-016-0160-6.

    Article  Google Scholar 

  19. Sugiyama T, Uo M, Wada T, Hongo T, Omagari D, Komiyama K, et al. Novel metal allergy patch test using metal nanoballs. J Nanobiotechnol. 2014;12:51. doi:10.1186/s12951-014-0051-7.

    Article  Google Scholar 

  20. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4:319–30. doi:10.3109/17435390.2010.483745.

    Article  CAS  PubMed  Google Scholar 

  21. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7. doi:10.1126/science.1114397.

    Article  CAS  PubMed  Google Scholar 

  22. Gustafsson Å, Lindstedt E, Elfsmark LS, Bucht A. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. J Immunotoxicol. 2011;8:111–21. doi:10.3109/1547691X.2010.546382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabbioni E, Fortaner S, Farina M, Del Torchio R, Olivato I, Petrarca C, et al. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model. Nanotoxicology. 2014;8:455–64. doi:10.3109/17435390.2013.796538.

    Article  CAS  PubMed  Google Scholar 

  24. Perconti S, Aceto GM, Verginelli F, Napolitano F, Petrarca C, Bernardini G, et al. Distinctive gene expression profiles in Balb/3T3 cells exposed to low dose cobalt nanoparticles, microparticles and ions: potential nanotoxicological relevance. J Biol Regul Homeost Agents. 2013;27:443–54.

    CAS  PubMed  Google Scholar 

  25. Santucci B, Valenzano C, de Rocco M, Cristaudo A. Platinum in the environment: frequency of reactions to platinum-group elements in patients with dermatitis and urticaria. Contact Dermatitis. 2000;43:333–8.

    Article  CAS  PubMed  Google Scholar 

  26. Muris J, Goossens A, Gonçalo M, Bircher AJ, Giménez-Arnau A, Foti C, et al. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys. Contact Dermatitis. 2015;72:286–96. doi:10.1111/cod.12327.

    Article  CAS  PubMed  Google Scholar 

  27. Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, et al. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy. 2015;13:13. doi:10.1186/s12948-015-0020-1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Taylor AJ, Bonner JC. Innate immune responses to nanoparticle exposure in the lung. J Environ Immunol Toxicol 1:150–6. doi:10.7178/jeit.23.

  29. Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale. 2014;6:3488–95. doi:10.1039/c3nr05772k.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai C-Y, Lu S-L, Hu C-W, Yeh C-S, Lee G-B, Lei H-Y. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J Immunol. 2012;188:68–76. doi:10.4049/jimmunol.1100344.

    Article  CAS  PubMed  Google Scholar 

  31. Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano. 2013;7:6997–7010. doi:10.1021/nn402145t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest. 2005;115:2169–79. doi:10.1172/JCI24422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neubauer N, Palomaeki J, Karisola P, Alenius H, Kasper G. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments – an indication for the catalytic nature of their interactions. Nanotoxicology. 2015:1–8. doi:10.3109/17435390.2015.1019585.

  34. Tsuzuky T, editor. Nanotechnology commercialization. CRC Press Taylor & Francis Group; 2013. Boca Raton, Florida, USA.

    Google Scholar 

  35. Izhaky D, Pecht I. What else can the immune system recognize? Proc Natl Acad Sci U S A. 1998;95:11509–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, et al. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 2006;19:11–4.

    CAS  PubMed  Google Scholar 

  37. Boscolo P, Bellante V, Leopold K, Maier M, Di Giampaolo L, Antonucci A, et al. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 2010;24:207–14.

    CAS  PubMed  Google Scholar 

  38. Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24:65S–71.

    PubMed  Google Scholar 

  39. Laverny G, Casset A, Purohit A, Schaeffer E, Spiegelhalter C, de Blay F, et al. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol Lett. 2013;217:91–101. doi:10.1016/j.toxlet.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  40. Arnoldussen YJ, Skogstad A, Skaug V, Kasem M, Haugen A, Benker N, et al. Involvement of IL-1 genes in the cellular responses to carbon nanotube exposure. Cytokine. 2015;73:128–37. doi:10.1016/j.cyto.2015.01.032.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar A, Najafzadeh M, Jacob BK, Dhawan A, Anderson D. Zinc oxide nanoparticles affect the expression of p53, Ras p21 and JNKs: an ex vivo/in vitro exposure study in respiratory disease patients. Mutagenesis. 2015;30:237–45. doi:10.1093/mutage/geu064.

    Article  CAS  PubMed  Google Scholar 

  42. Inoue K-I, Takano H. The effect of nanoparticles on airway allergy in mice. Eur Respir J. 2011;37:1300–1. doi:10.1183/09031936.00027211.

    Article  PubMed  Google Scholar 

  43. Inoue K. Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ Health Prev Med. 2011;16:139–43. doi:10.1007/s12199-010-0177-7.

    Article  CAS  PubMed  Google Scholar 

  44. Huang K-L, Lee Y-H, Chen H-I, Liao H-S, Chiang B-L, Cheng T-J. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J Hazard Mater. 2015;297:304–12. doi:10.1016/j.jhazmat.2015.05.023.

    Article  CAS  PubMed  Google Scholar 

  45. Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT, Grassian VH, Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol. 2011;8:29. doi:10.1186/1743-8977-8-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lefebvre DE, Pearce B, Fine JH, Chomyshyn E, Ross N, Halappanavar S, et al. In vitro enhancement of mouse T helper 2 cell sensitization to ovalbumin allergen by carbon black nanoparticles. Toxicol Sci. 2014;138:322–32. doi:10.1093/toxsci/kfu010.

    Article  CAS  PubMed  Google Scholar 

  47. Nygaard UC, Samuelsen M, Marioara CD, Løvik M. Carbon nanofibers have IgE adjuvant capacity but are less potent than nanotubes in promoting allergic airway responses. Biomed Res Int. 2013;2013:476010. doi:10.1155/2013/476010.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brandenberger C, Rowley NL, Jackson-Humbles DN, Zhang Q, Bramble LA, Lewandowski RP, et al. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol. 2013;10:26. doi:10.1186/1743-8977-10-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han B, Guo J, Abrahaley T, Qin L, Wang L, Zheng Y, et al. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS ONE. 2011;6:e17236. doi:10.1371/journal.pone.0017236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, et al. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 2014;26:159–72. doi:10.1093/intimm/dxt053.

    Article  CAS  PubMed  Google Scholar 

  51. Roy R, Kumar D, Sharma A, Gupta P, Chaudhari BP, Tripathi A, et al. ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice. Toxicol Lett. 2014;230:421–33. doi:10.1016/j.toxlet.2014.08.008.

    Article  CAS  PubMed  Google Scholar 

  52. Matsumura M, Takasu N, Nagata M, Nakamura K, Kawai M, Yoshino S. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice. J Immunotoxicol 7:232–7. doi:10.3109/1547691X.2010.487879.

  53. Poma A, Ragnelli AM, de Lapuente J, Ramos D, Borras M, Aimola P, et al. In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse: evaluation by hematological, histological, and TEM analysis. J Immunol Res. 2014;2014:361419. doi:10.1155/2014/361419.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chuang H-C, Hsiao T-C, Wu C-K, Chang H-H, Lee C-H, Chang C-C, et al. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomedicine. 2013;8:4495–506. doi:10.2147/IJN.S52239.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Su C-L, Chen T-T, Chang C-C, Chuang K-J, Wu C-K, Liu W-T, et al. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen provoked mice. Int J Nanomedicine. 2013;8:2783–99. doi:10.2147/IJN.S46997.

    PubMed  PubMed Central  Google Scholar 

  56. Jang S, Park JW, Cha HR, Jung SY, Lee JE, Jung SS, et al. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomedicine. 2012;7:1329–43. doi:10.2147/IJN.S27159.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, et al. Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology. 2010;4:161–76. doi:10.3109/17435390903518479.

    Article  CAS  PubMed  Google Scholar 

  58. Ban M, Langonné I, Huguet N, Guichard Y, Goutet M. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett. 2013;216:31–9. doi:10.1016/j.toxlet.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  59. Hirai T, Yoshioka Y, Takahashi H, Ichihashi K, Udaka A, Mori T, et al. Cutaneous exposure to agglomerates of silica nanoparticles and allergen results in IgE-biased immune response and increased sensitivity to anaphylaxis in mice. Part Fibre Toxicol. 2015;12:16. doi:10.1186/s12989-015-0095-3.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol. 1990;102:268–81.

    Article  CAS  PubMed  Google Scholar 

  61. Jonasson S, Gustafsson A, Koch B, Bucht A. Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol. 2013;25:179–91. doi:10.3109/08958378.2013.770939.

    Article  CAS  PubMed  Google Scholar 

  62. Yanagisawa R, Takano H, Inoue K-I, Koike E, Kamachi T, Sadakane K, et al. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood). 2009;234:314–22. doi:10.3181/0810-RM-304.

    Article  CAS  Google Scholar 

  63. Chang X, Fu Y, Zhang Y, Tang M, Wang B. Effects of Th1 and Th2 cells balance in pulmonary injury induced by nano titanium dioxide. Environ Toxicol Pharmacol. 2013;37:275–83. doi:10.1016/j.etap.2013.12.001.

    Article  PubMed  Google Scholar 

  64. Auttachoat W, McLoughlin CE, White KL, Smith MJ. Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nanoparticles. J Immunotoxicol. 11:273–82. doi:10.3109/1547691X.2013.844750.

  65. Scarino A, Noël A, Renzi PM, Cloutier Y, Vincent R, Truchon G, et al. Impact of emerging pollutants on pulmonary inflammation in asthmatic rats: ethanol vapors and agglomerated TiO2 nanoparticles. Inhal Toxicol. 2012;24:528–38. doi:10.3109/08958378.2012.696741.

    Article  CAS  PubMed  Google Scholar 

  66. Park E-J, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology. 2009;260:37–46. doi:10.1016/j.tox.2009.03.005.

    Article  CAS  PubMed  Google Scholar 

  67. Yanagisawa R, Takano H, Inoue KI, Koike E, Sadakane K, Ichinose T. Size effects of polystyrene nanoparticles on atopic dermatitis like skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 23:131–41.

    Google Scholar 

  68. Park Y-H, Jeong SH, Yi SM, Choi BH, Kim Y-R, Kim I-K, et al. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol in Vitro. 2011;25:1863–9. doi:10.1016/j.tiv.2011.05.022.

    Article  CAS  PubMed  Google Scholar 

  69. Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi K, et al. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol. 2012;9:3. doi:10.1186/1743-8977-9-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cho W-S, Duffin R, Bradley M, Megson IL, Macnee W, Howie SEM, et al. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012;39:546–57. doi:10.1183/09031936.00047111.

    Article  CAS  PubMed  Google Scholar 

  71. Geetha CS, Remya NS, Leji KB, Syama S, Reshma SC, Sreekanth PJ, et al. Cells-nano interactions and molecular toxicity after delayed hypersensitivity, in guinea pigs on exposure to hydroxyapatite nanoparticles. Colloids Surf B: Biointerfaces. 2013;112:204–12. doi:10.1016/j.colsurfb.2013.07.058.

    Article  CAS  PubMed  Google Scholar 

  72. Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179:665–72.

    Article  CAS  PubMed  Google Scholar 

  73. Park HS, Kim KH, Jang S, Park JW, Cha HR, Lee JE, et al. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine. 2010;5:505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44:1689–99. doi:10.1016/j.freeradbiomed.2008.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34:559–67. doi:10.1183/09031936.00178308.

    Article  CAS  PubMed  Google Scholar 

  76. Hussain S, Vanoirbeek JAJ, Luyts K, De Vooght V, Verbeken E, Thomassen LCJ, et al. Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J. 2011;37:299–309. doi:10.1183/09031936.00168509.

    Article  CAS  PubMed  Google Scholar 

  77. Lanone S, Boczkowski J. Titanium and gold nanoparticles in asthma: the bad and the ugly. Eur Respir J. 2011;37:225–7. doi:10.1183/09031936.00140110.

    Article  CAS  PubMed  Google Scholar 

  78. Newman KL, Newman LS. Occupational causes of sarcoidosis. Curr Opin Allergy Clin Immunol. 2012;12:145–50. doi:10.1097/ACI.0b013e3283515173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao X, Zeng X, Zhang X, Ma L, Liu X, Yu H, et al. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int J Nanomedicine. 2013;8:4553–62. doi:10.2147/IJN.S51633.

    PubMed  PubMed Central  Google Scholar 

  80. Shen L, Higuchi T, Tubbe I, Voltz N, Krummen M, Pektor S, et al. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo. PLoS ONE. 2013;8:e80904. doi:10.1371/journal.pone.0080904.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Park M-H, Kim J-H, Jeon J-W, Park J-K, Lee B-J, Suh G-H, et al. Preformulation studies of bee venom for the preparation of bee venom-loaded PLGA particles. Molecules. 2015;20:15072–83. doi:10.3390/molecules200815072.

    Article  CAS  PubMed  Google Scholar 

  82. Shahbazi M-A, Fernández TD, Mäkilä EM, Le Guével X, Mayorga C, Kaasalainen MH, et al. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials. 2014;35:9224–35. doi:10.1016/j.biomaterials.2014.07.050.

    Article  CAS  PubMed  Google Scholar 

  83. Gustafson K, Jakobsen SS, Lorenzen ND, Thyssen JP, Johansen JD, Bonefeld CM, et al. Metal release and metal allergy after total hip replacement with resurfacing versus conventional hybrid prosthesis. Acta Orthop. 2014;85:348–54. doi:10.3109/17453674.2014.922730.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, et al. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine. 2014;10:1–9. doi:10.1016/j.nano.2013.06.010.

    CAS  PubMed  Google Scholar 

  85. Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol. 2010;22:679–94. doi:10.3109/08958371003758823.

    Article  CAS  PubMed  Google Scholar 

  86. Toyama T, Matsuda H, Ishida I, Tani M, Kitaba S, Sano S, et al. A case of toxic epidermal necrolysis-like dermatitis evolving from contact dermatitis of the hands associated with exposure to dendrimers. Contact Dermatitis. 2008;59:122–3. doi:10.1111/j.1600-0536.2008.01340.x.

    Article  CAS  PubMed  Google Scholar 

  87. Journeay WS, Goldman RH. Occupational handling of nickel nanoparticles: a case report. Am J Ind Med. 2014;57:1073–6. doi:10.1002/ajim.22344.

    Article  PubMed  Google Scholar 

  88. Liao H-Y, Chung Y-T, Lai C-H, Lin M-H, Liou S-H. Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers. Ind Health. 2014;52:199–215.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Romagnani Matucci Rossi. L’asma bronchiale. SEE-Firenze; 2004.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Flavia Carpiniello for the assistance in the revision of the English language and the graphical aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Petrarca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Petrarca, C., Di Giampaolo, L., Pedata, P., Cortese, S., Di Gioacchino, M. (2017). Engineered Nanomaterials and Occupational Allergy. In: Otsuki, T., Petrarca, C., Di Gioacchino, M. (eds) Allergy and Immunotoxicology in Occupational Health. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-0351-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0351-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0349-3

  • Online ISBN: 978-981-10-0351-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics