Skip to main content

Catalytic Depolymerization of Chitin to N-Acetylated Monomers

  • Chapter
  • First Online:
A Study on Catalytic Conversion of Non-Food Biomass into Chemicals

Part of the book series: Springer Theses ((Springer Theses))

  • 742 Accesses

Abstract

Chitin, the most abundant nitrogen-containing biopolymer, includes both glycosidic bonds and N-acetyl groups in its structure and is an attractive source of useful monomers such as N-acetylglucosamine (GlcNAc) and 1-O-methyl-N-acetylglucosamine (MeGlcNAc). In order to synthesize the N-acetylated monomers in high yields, selective hydrolysis of glycosidic bonds in chitin without deacetylation is absolutely necessary. In this chapter, new two-step catalytic depolymerization of chitin to the N-acetylated monomers has been developed: (i) mechanical force-assisted hydrolysis of chitin to water-soluble oligomers and (ii) thermocatalytic solvolysis, hydrolysis, and methanolysis in this study, of the oligomers to the N-acetylated monomers. In both steps, deacetylation does not happen, resulting in good yields of GlcNAc (53 %) and MeGlcNAc (70 %).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Yan N (2014) Novel catalytic systems to convert chitin and lignin into valuable chemicals. Catal Surv Asia 18(4):164–176

    Article  CAS  Google Scholar 

  2. Chen J-K, Shen C-R, Liu C-L (2010) N-Acetylglucosamine: production and applications. Mar Drugs 8(9):2493–2516

    Article  CAS  Google Scholar 

  3. Omari KW, Dodot L, Kerton FM (2012) A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound, 3-acetamido-5-acetylfuran. ChemSusChem 5(9):1767–1772

    Google Scholar 

  4. Wang Y, Pedersen CM, Deng T, Qiao Y, Hou X (2013) Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution. Bioresour Technol 143:384–390

    Article  CAS  Google Scholar 

  5. Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T (2013) Non-catalytic synthesis of Chromogen I and III from N-acetyl-D-glucosamine in high-temperature water. Green Chem 15(10):2960–2966

    Article  CAS  Google Scholar 

  6. Ohmi Y, Nishimura S, Ebitani K (2013) Synthesis of α-amino acids from glucosamine-HCl and its derivatives by aerobic oxidation in water catalyzed by Au nanoparticles on basic supports. ChemSusChem 6(12):2259–2262

    Article  CAS  Google Scholar 

  7. Chen X, Chew SL, Kerton FM, Yan N (2014) Direct conversion of chitin into a N-containing furan derivative. Green Chem 16(4):2204–2212

    Article  CAS  Google Scholar 

  8. Tabary F, Font J, Bourrillon R (1987) Isolation, molecular and biological properties of a lectin from rice embryo: relationship with wheat germ agglutinin properties. Arch Biochem Biophys 259(1):79–88

    Article  CAS  Google Scholar 

  9. Kochibe N, Matta KL (1989) Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom. J Biol Chem 264(1):173–177

    CAS  Google Scholar 

  10. Fujii S, Kondo Y, Matsui M, Ichihashi K (1993) Methods for the production of sugar-based synthetic polymers (Japanese title: Toushitsu gousei koubunshi oyobi sono seizouhou). JP Patent 5-178904

    Google Scholar 

  11. Agarwal J, Peddinti RK (2012) Synthesis and characterization of monosaccharide derivatives and application of sugar-based prolinamides in asymmetric synthesis. Eur J Org Chem 32:6390–6406

    Article  Google Scholar 

  12. RajanBabu TV, Ayers TA, Halliday GA, You KK, Calabrese JC (1997) Carbohydrate phosphinites as practical ligands in asymmetric catalysis: electronic effects and dependence of backbone chirality in Rh-catalyzed asymmetric hydrogenations. Synthesis of R- or S-amino acids using natural sugars as ligand precursors. J Org Chem 62(17):6012–6028

    Article  CAS  Google Scholar 

  13. Goyal N, Cheuk S, Wang G (2010) Synthesis and characterization of D-glucosamine-derived low molecular weight gelators. Tetrahedron 66(32):5962–5971

    Article  CAS  Google Scholar 

  14. Koeller KM, Wong C-H (2000) Emerging themes in medicinal glycoscience. Nat Biotechnol 18(8):835–841

    Article  CAS  Google Scholar 

  15. Shikhman AR, Kuhn K, Alaaeddine N, Lotz M (2001) N-Acetylglucosamine prevents IL-1β-mediated activation of human chondrocytes. J Immunol 166(8):5155–5160

    Article  CAS  Google Scholar 

  16. Álvarez-Añorve LI, Calcagno ML, Plumbridge J (2005) Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. J Bacteriol 187(9):2974–2982

    Article  Google Scholar 

  17. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S (2002) Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydr Res 337(8):761–763

    Article  CAS  Google Scholar 

  18. Einbu A, Vårum KM (2007) Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromolecules 8(1):309–314

    Article  CAS  Google Scholar 

  19. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105(8):2921–2948

    Article  CAS  Google Scholar 

  20. Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459(7243):68–72

    Article  CAS  Google Scholar 

  21. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12(3):468–474

    Article  CAS  Google Scholar 

  22. Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454

    Article  CAS  Google Scholar 

  23. Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15(10):2761–2768

    Article  CAS  Google Scholar 

  24. Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51

    Article  CAS  Google Scholar 

  25. Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K (2013) Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin. Carbohydr Polym 92(2):1573–1578

    Article  CAS  Google Scholar 

  26. Pierson Y, Chen X, Bobbink FD, Zhang J, Yan N (2014) Acid-catalyzed chitin liquefaction in ethylene glycol. ACS Sustainable Chem Eng 2(8):2081–2089

    Article  CAS  Google Scholar 

  27. Goodwin RD (1987) Methanol thermodynamic properties from 176 to 673 K at pressures to 700 Bar. J Phys Chem Ref Data 16(4):799–892

    Article  CAS  Google Scholar 

  28. Winstein S, Clippinger E, Fainberg AH, Heck R, Robinson GC (1956) Salt effects and ion pairs in solvolysis and related reactions. III. Common ion rate depression and exchange of anions during acetolysis. J Am Chem Soc 78(2):328–335

    Article  CAS  Google Scholar 

  29. Chan J, Tang A, Bennet AJ (2012) A stepwise solvent-promoted SNi reaction of α-D-glucopyranosyl fluoride: mechanistic implications for retaining glycosyltransferases. J Am Chem Soc 134(2):1212–1220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuho Yabushita .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yabushita, M. (2016). Catalytic Depolymerization of Chitin to N-Acetylated Monomers. In: A Study on Catalytic Conversion of Non-Food Biomass into Chemicals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0332-5_4

Download citation

Publish with us

Policies and ethics