Skip to main content

Hydrolysis of Cellulose to Glucose Using Carbon Catalysts

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

High-yielding one-pot production of glucose from cellulose has been achieved using an alkali-activated carbon K26 as a catalyst bearing weak acid sites. The hydrolysis of solid cellulose by solid catalyst is limited due to low physical contact between the substrate and catalyst, but a new ball-milling pretreatment, ball-milling cellulose and carbon together (named mix-milling), has drastically improved the hydrolysis rate. As a result, 90 % yield and 97 % selectivity of water-soluble glucans have been obtained by K26 at 453 K for 20 min. Model reactions and kinetic studies have shown that the mix-milling pretreatment selectively accelerates solid-solid reaction (cellulose to water-soluble oligosaccharides), but does not liquid-solid reaction (soluble oligosaccharides to glucose). Hence, a trace amount of HCl (0.012 wt%) is used to depolymerize oligosaccharides to glucose and as high as 88 % yield of glucose with 90 % selectivity has been achieved. This reaction system is also effective for the hydrolysis of cellulose/hemicellulose in bagasse kraft pulp to hexoses/pentoses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2(6):610–626

    Article  CAS  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  3. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  CAS  Google Scholar 

  4. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699

    Article  CAS  Google Scholar 

  5. Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870

    Article  Google Scholar 

  6. Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B Environ 145:1–9

    Article  CAS  Google Scholar 

  7. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  CAS  Google Scholar 

  8. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100

    Article  CAS  Google Scholar 

  9. Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763

    Article  CAS  Google Scholar 

  10. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107

    Article  CAS  Google Scholar 

  11. Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2(5):869–883

    Article  CAS  Google Scholar 

  12. Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30

    Article  Google Scholar 

  13. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant Mesoporous-Carbon-Supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443

    Article  CAS  Google Scholar 

  14. Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2011) Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Appl Catal A Gen 407(1):188–194

    Article  CAS  Google Scholar 

  15. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793

    Article  CAS  Google Scholar 

  16. Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037

    Article  CAS  Google Scholar 

  17. Mo X, López DE, Suwannakarn K, Liu Y, Lotero E, Goodwin JG Jr, Lu C (2008) Activation and deactivation characteristics of sulfonated carbon catalysts. J Catal 254(2):332–338

    Article  CAS  Google Scholar 

  18. Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2013) Hydrolysis catalysis of Miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310

    Article  Google Scholar 

  19. Charmot A, Chung P-W, Katz A (2014) Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS Sustainable Chem Eng 2(12):2866–2872

    Article  CAS  Google Scholar 

  20. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713

    Article  CAS  Google Scholar 

  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determine of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedures (LAP). (Online) http://www.nrel.gov/biomass/pdfs/42618.pdf Accessed 31 Oct 2015

  22. Boehm H (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769

    Article  CAS  Google Scholar 

  23. McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401

    Article  CAS  Google Scholar 

  24. Strlič M, Kolenc J, Kolar J, Pihlar B (2002) Enthalpic interactions in size exclusion chromatography of pullulan and cellulose in LiCl-N, N-dimethylacetamide. J Chromatogr A 964(1):47–54

    Article  Google Scholar 

  25. Mäurer T, Müller SP, Kraushaar-Czarnetzki B (2001) Aggregation and peptization behavior of zeolite crystals in sols and suspensions. Ind Eng Chem Res 40(12):2573–2579

    Article  Google Scholar 

  26. Gopalakrishnan S, Yada S, Muench J, Selvam T, Schwieger W, Sommer M, Peukert W (2007) Wet milling of H-ZSM-5 zeolite and its effects on direct oxidation of benzene to phenol. Appl Catal A Gen 327(2):132–138

    Article  CAS  Google Scholar 

  27. Mitra B, Kunzru D (2008) Washcoating of different zeolites on cordierite monoliths. J Am Ceram Soc 91(1):64–70

    Article  CAS  Google Scholar 

  28. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841

    Article  CAS  Google Scholar 

  29. Strachan J (1938) Solubility of cellulose in water. Nature 141:332–333

    Article  CAS  Google Scholar 

  30. Fang Z, Koziński JA (2000) Phase behavior and combustion of hydrocarbon-contaminated sludge in supercritical water at pressures up to 822 MPa and temperatures up to 535 ºC. Proc Combust Inst 28(2):2717–2725

    Article  CAS  Google Scholar 

  31. Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15(10):2761–2768

    Article  CAS  Google Scholar 

  32. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12(3):468–474

    Article  CAS  Google Scholar 

  33. Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454

    Article  CAS  Google Scholar 

  34. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592

    Article  CAS  Google Scholar 

  35. International Chemical Information Service (ICIS). Hydrochloric acid prices, markets & analysis. (Online) http://www.icis.com/chemicals/hydrochloric-acid/ Accessed 31 Oct 2015

  36. Nexant. Sulfur/sulfuric acid market analysis. (Online) http://yosemite.epa.gov/oa/eab_web_docket.nsf/Filings%20By%20Appeal%20Number/EFAE40E5FFEFBBF785257A2A0047AC45/$File/Exhibit%2052m%20to%20Revised%20Petition%20for%20Review%20…12.52m.pdf Accessed 31 Oct 2015

  37. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196

    Article  Google Scholar 

  38. Abatzoglov N, Bouchard J, Chornet E, Overend RP (1986) Dilute acid depolymerization of cellulose in aqueous phase: Experimental evidence of the significant presence of soluble oligomeric intermediates. Canad J Chem Eng 64(5):781–786

    Article  Google Scholar 

  39. Saeman JF (1945) Kinetics of wood saccharification—hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52

    Article  CAS  Google Scholar 

  40. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1):261–268

    Article  CAS  Google Scholar 

  41. Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333

    Article  CAS  Google Scholar 

  42. Faith WL (1945) Development of the Scholler process in the United States. Ind Eng Chem 37(1):9–11

    Article  CAS  Google Scholar 

  43. Kobayashi H, Kaiki H, Shrotri A, Techikawara K, Fukuoka A (2016) Hydrolysis of woody biomass by biomass-derived reusable heterogeneous catalyst. Chem Sci 7(1):692–696

    Google Scholar 

  44. Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2014) Kinetic study of catalytic conversion of cellulose to sugar alcohols under low-pressure hydrogen. ChemCatChem 6(1):230–236

    Article  CAS  Google Scholar 

  45. Liao Y, Liu Q, Wang T, Long J, Zhang Q, Ma L, Liu Y, Li Y (2014) Promoting hydrolytic hydrogenation of cellulose to sugar alcohols by mixed ball milling of cellulose and solid acid catalyst. Energy Fuels 28(9):5778–5784

    Article  CAS  Google Scholar 

  46. Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39(15):2247–2268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuho Yabushita .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yabushita, M. (2016). Hydrolysis of Cellulose to Glucose Using Carbon Catalysts. In: A Study on Catalytic Conversion of Non-Food Biomass into Chemicals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0332-5_2

Download citation

Publish with us

Policies and ethics