Carbon Nanofibres and Nanotubes for Composite Applications

  • Maria C. PaivaEmail author
  • José A. Covas
Part of the Textile Science and Clothing Technology book series (TSCT)


Carbon nanotubes and nanofibers are now commercially viable making possible a number of effective applications. This chapter provides a brief but didactic revision of the polymer/nanotube or nanofiber mixing methods, with major focus on melt mixing. The nanotube or nanofiber dispersion parameters are discussed, as well as the role of chemical functionalization. As a framework for this discussion the general properties of carbon nanotubes and nanofibers, as well as their polymer composites, are summarized. A market perspective is presented demonstrating the growing interest of these materials. The effective market growth will depend on the efficiency in tackling dominant factors such as price, material quality/purity and consistency, health and safety aspects and, especially in the case of polymer nanocomposites, dispersibility and compatibility with the matrix.


Maleic Anhydride Polymer Nanocomposites Twin Screw Extruder Hydrodynamic Stress Staggering Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdel-Goad M, Potschke P (2005) Rheological characterization of melt processed polycarbonate multiwalled carbon nanotube Composites. J Non-Newton Fluid Mech 128:2–6CrossRefGoogle Scholar
  2. 2.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22CrossRefGoogle Scholar
  3. 3.
    Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal G, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28CrossRefGoogle Scholar
  4. 4.
    Anand A, Agarwal U, Rani J (2007) CNT–reinforced PET nanocomposite by melt compounding. J Appl Polym Sci 104:3090–3095CrossRefGoogle Scholar
  5. 5.
    Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479CrossRefGoogle Scholar
  6. 6.
    Araújo RF, Silva CJ, Paiva MC, Melle-Franco M, Proença MF (2013) Efficient dispersion of multi-walled carbon nanotubes in aqueous solution by non-covalent interaction with perylene bisimides. RSC Adv 3:24535–24542CrossRefGoogle Scholar
  7. 7.
    Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62CrossRefGoogle Scholar
  8. 8.
    Barbas JM, Machado AV, Covas JA (2014) Processing conditions effect on dispersion evolution in a twin screw extruder: polypropylene-clay nanocomposites. Chem Eng Technol 37:1–11CrossRefGoogle Scholar
  9. 9.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp Sci Technol 69:1486–1498CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya AR, Potschke P, Haubler L, Fischer D (2005) Reactive compatibilization of melt mixed PA6/SWNT composites: mechanical properties and morphology. Macromol Chem Phys 206:2084–2095CrossRefGoogle Scholar
  12. 12.
    Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993CrossRefGoogle Scholar
  13. 13.
    Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645CrossRefGoogle Scholar
  14. 14.
    Carneiro OS, Covas JA, Reis R, Brulé B, Flat JJ (2012) The effect of processing conditions on the characteristics of electrically conductive thermoplastic composites. J Thermoplast Compos Mat 25:607–629CrossRefGoogle Scholar
  15. 15.
    Carponcin D, Dantras E, Aridon G, Levallois F, Cadiergues L, Lacabanne C (2012) Evolution of dispersion of carbon nanotubes in Polyamide 11 matrix composites as determined by DC conductivity. Compos Sci Technol 72:515–520Google Scholar
  16. 16.
    Chen L, Pang XJ, Qu MZ, Zhang QT, Wang B, Zhang BL, Yu ZL (2006) Fabrication and characterization of polycarbonate/carbon nanotubes composites. Compos A 37:1485–1489CrossRefGoogle Scholar
  17. 17.
    Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRefGoogle Scholar
  18. 18.
    Chen J, Y-Y Shi, J-H Yang, Zhang N, Huang T, Wang Y (2013) Improving interfacial adhesion between immiscible polymers by carbon nanotubes. Polymer 54:464–471CrossRefGoogle Scholar
  19. 19.
    Clavé G, Delport G, Roquelet C, Lauret J-S, Deleporte E, Vialla F, Langlois B, Parret R, Voisin C, Roussignol P, Jousselme B, Gloter A, Stephan O, Filoramo A, Derycke V, Campidelli S (2013) Functionalization of carbon nanotubes through polymerization in micelles: a bridge between the covalent and noncovalent methods. Chem Mater 25(13):2700–2707CrossRefGoogle Scholar
  20. 20.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652Google Scholar
  21. 21.
    Dai H (2002) Carbon nanotubes: synthesis, integration and properties. Acc Chem Res 35:1035–1044CrossRefGoogle Scholar
  22. 22.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  23. 23.
    Davenport M (2015) Much ado about small things. Chem Eng News 93:11–15Google Scholar
  24. 24.
    De Volder MFL, Tawfick SH, Baughman RH, Hurt AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539Google Scholar
  25. 25.
    Di Crescenzo A, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690CrossRefGoogle Scholar
  26. 26.
    Domingues N, Gaspar-Cunha A, Covas JA, Camesasca M, Kaufman M, Manas-Zloczower I (2010) Dynamics of filler size and spatial distribution in a plasticating single screw extruder—modeling and experimental observations. Int Polym Proc XXV:188–198CrossRefGoogle Scholar
  27. 27.
    Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 20:301–310CrossRefGoogle Scholar
  28. 28.
    Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761CrossRefGoogle Scholar
  29. 29.
    Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277CrossRefGoogle Scholar
  30. 30.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859CrossRefGoogle Scholar
  31. 31.
    Huang Y-Y, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRefGoogle Scholar
  32. 32.
    Hwang TY, Kim HJ, Ahn Y, Lee JW (2010) Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled carbon nanotube nanocomposites. Korea-Aus Rheol J 22:141–148Google Scholar
  33. 33.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  34. 34.
    Inno.CNT (2011) Innovation Alliance CNT—Carbon Nanomaterials Conquer Markets, Innovationsallianz CNT. Accessed 22 July 2015
  35. 35.
    Jamali S, Paiva MC, Covas JA (2013) Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polym Test 32:01–707CrossRefGoogle Scholar
  36. 36.
    Jogi BF, Sawant M, Kulkarni M, Brahmankar PK (2012) Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: a review. J Encapsulation Adsorpt Sci 2(69):78Google Scholar
  37. 37.
    De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev-Sci Eng 42(4):481–5107CrossRefGoogle Scholar
  38. 38.
    Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, Lopez-Navarrete JT (2004) Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels-Alder cycloaddition. Chem Commun 15:1734–1735CrossRefGoogle Scholar
  39. 39.
    Kasaliwal GR, Pegel S, Goldel A, Potschke P, Heinrich G (2010) Analysis of agglomerate dispersion mechanism of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51:2708–2720CrossRefGoogle Scholar
  40. 40.
    Kasaliwal G, Villmow T, Pegel S, Pötschke P (2011) Influence of material and processing parameters on carbon nanotube dispersion in polymer melts. In: McNally T, Pötschke P (eds) Polymer carbon nanotube composites: preparation, properties and applications. Woodhead Publishing Limited, Cambridge, pp 92–132CrossRefGoogle Scholar
  41. 41.
    Kohlgruber K (ed) (2008) Co-rotating twin screw extruders. Carl Hanser Verlag, MunichGoogle Scholar
  42. 42.
    Krause B, Petzold G, Pegel S, Pötschke P (2009) Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers. Carbon 47:602–612CrossRefGoogle Scholar
  43. 43.
    Krause B, Mende M, Pötschke P, Petzold G (2010) Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48:2746–2754CrossRefGoogle Scholar
  44. 44.
    Li Y, Yang D, Adronov A, Gao Y, Luo X, Li H (2012) Covalent functionalization of single-walled carbon nanotubes with thermoresponsive core cross-linked polymeric micelle Macromolecules 45(11):4698–4706Google Scholar
  45. 45.
    Li Y, Shimizu H (2007) High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48:2203–2207CrossRefGoogle Scholar
  46. 46.
    Lin TS, Cheng LY, Hsiao CC, Yang ACM (2005) Percolated network of entangled multiwalled carbon nanotubes dispersed in polystyrene thin films through surface grafting polymerization. Mat Chem Phys 94:438–443CrossRefGoogle Scholar
  47. 47.
    Lin B, Sundararaj U, Potschke P (2006) Melt mixing of polycarbonate with multiwalled carbon nanotubes in miniature mixers. Macromol Mater Eng 291:227–238CrossRefGoogle Scholar
  48. 48.
    Liu T, Phang IY, Shen L, Chow SY, Zhang YD (2004) Morphology and mechanical properties of MWCNT reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRefGoogle Scholar
  49. 49.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367CrossRefGoogle Scholar
  50. 50.
    Machado AV, Covas JA, Walet M, Van Duin M (2001) Effect of composition and processing conditions on the chemical and morphological evolution of PA-6/EPM/ EPM-g-MA blends in a corotating twin-screw extruder. J Appl Polym Sci 80:1535–1546CrossRefGoogle Scholar
  51. 51.
    Mahfuz H, Adnan A, Rangari VK, Hasan MM, Jeelani S, Wright WJ et al (2006) Enhancement of strength and stiffness of Nylon 6 filaments through carbon nanotubes reinforcement. Appl Phys Lett 88:083119CrossRefGoogle Scholar
  52. 52.
    Maric M, Macosko CW (2001) Improving polymer dispersions in mini-mixers. Polym Eng Sci 41:118–130CrossRefGoogle Scholar
  53. 53.
    MarketsandMarkets (2013) Global CNT Market—SWCNT, MWCNT, Technology, Applications, Trends & Outlook (2011–2016)”. Accessed 15 July 2015
  54. 54.
    MarketsandMarkets (2014) Carbon Nanotubes (CNTs) Market by Type (SWCNTS & MWCNTS), Application (Electronics & Semiconductors, Chemical & Polymers, Batteries & Capacitors, Energy, Medical, Composites, & Aerospace & Defense) & Geography—Global Trends & Forecasts to 2018. Accessed 15 July 2015
  55. 55.
    Micusik M, Omastova M, Krupa I, Prokes J, Pissis P, Logakis E, Pandis P, Potschke P, Pionteck (2009) A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. J Appl Polym Sci 113:2536–2551CrossRefGoogle Scholar
  56. 56.
    Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R, Pötschke P (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71:1936–1943CrossRefGoogle Scholar
  57. 57.
    Manas-Zloczower I (2009) Mixing and compounding of polymers: theory and practice, 2nd edn. Hanser, MunichCrossRefGoogle Scholar
  58. 58.
    Mayhew E, Prakash V (2014) Thermal conductivity of high performance carbon nanotube yarn-like fibers. J Appl Phys 115:174306CrossRefGoogle Scholar
  59. 59.
    Monthioux M, Noé L, Dussault L, Dupin J-C, Latorre N, Ubieto T, Romeo E, Rovo C, Monzón A, Guimon C (2007) Texturising and structurising mechanisms of carbon nanofilaments during growth. J Mater Chem 17:4611–4618CrossRefGoogle Scholar
  60. 60.
    Muller MT, Krause B, Kretzschmar B, Potschke P (2011) Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos Sci Technol 71:1535–1542CrossRefGoogle Scholar
  61. 61.
    Novais RM, Covas JA, Paiva MC (2012) The effect of flow type and chemical functionalization on the dispersion of carbon nanofiber agglomerates in polypropylene. Compos A 43:833–841CrossRefGoogle Scholar
  62. 62.
    Novais RM, Simon F, Paiva MC, Covas JA (2012) The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion. Compos A 43:2189–2198CrossRefGoogle Scholar
  63. 63.
    Novais RM, Simon F, Pötschke P, Villmow T, Covas JA, Paiva MC (2013) Poly(lactic acid) composites with poly(lactic acid)-modified carbon nanotubes. J Polym Sci Part A: Polym Chem 51:3740–3750CrossRefGoogle Scholar
  64. 64.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene. J Crystal Growth 32(3):335–349CrossRefGoogle Scholar
  65. 65.
    Paiva MC, Simon F, Novais RM, Ferreira T, Proença MF, Xu W, Besenbacher F (2010) Controlled functionalization of carbon nanotubes by a solvent-free multicomponent approach. ACS Nano 4(12):7379–7386CrossRefGoogle Scholar
  66. 66.
    Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun Y-P (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42:2849–2854CrossRefGoogle Scholar
  67. 67.
    Pan Y, Chan SH, Zhao J (2010) Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Compos A 41:419–426CrossRefGoogle Scholar
  68. 68.
    Peeterbroeck S, Alexandre M, Nagy JB, Pirlot C, Fonseca A, Moreau N et al (2004) Polymer-layered silicate–carbon nanotube nanocomposites: unique nanofiller synergistic effect. Compos Sci Technol 64:2317–2323CrossRefGoogle Scholar
  69. 69.
    Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49:974–984CrossRefGoogle Scholar
  70. 70.
    Peigney A, Laurent Ch, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514CrossRefGoogle Scholar
  71. 71.
    Potschke P, Pegel S, Claes M, Bonduel D (2008) A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol Rapid Commun 29:244–251CrossRefGoogle Scholar
  72. 72.
    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884CrossRefGoogle Scholar
  73. 73.
    Proença MF, Araújo RF, Paiva MC, Silva CJ (2009) The Diels-Alder cycloaddition reaction in the functionalization of carbon nanofibers. J Nanosci Nanotechnol 9:6234–6238CrossRefGoogle Scholar
  74. 74.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2871CrossRefGoogle Scholar
  75. 75.
    Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660–2669CrossRefGoogle Scholar
  76. 76.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus M (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46(3):1804–1811CrossRefGoogle Scholar
  77. 77.
    Saito Y, Yoshikawa T, Bandow S, Tomita M, Hayashi T (1993) Interlayer spacings in carbon nanotubes. Phys Rev B 48(3):1907–1909CrossRefGoogle Scholar
  78. 78.
    Salzano de Luna M, Pellegrino L, Daghetta M, Mazzocchia CV, Acierno D, Filippone G (2013) Importance of the morphology and structure of the primary aggregates for the dispersibility of carbon nanotubes in polymer melts. Compos Sci Technol 85:17–22CrossRefGoogle Scholar
  79. 79.
    Sathyanarayana S, Hübner C (2013) Thermoplastic nanocomposites with carbon nanotubes. In: Njuguna J (ed) Structural nanocomposites, perspectives for future applications. Springer, Heidelberg, pp 19–60CrossRefGoogle Scholar
  80. 80.
    Sathyanarayana S, Olowojoba G, Weiss P, Caglar B, Pataki B, Mikonsaari I, Hübner C, Henning F (2013) Compounding of MWCNT with PS in a twin-screw extruder with varying process parameters: morphology, interfacial behaviour, thermal stability, rheology and volume resistivity. Macromol Mat Eng 298:89–105CrossRefGoogle Scholar
  81. 81.
    Scott CE, Macosko CW (1991) Model experiments concerning morphology development during the initial stages of polymer blending. Polym Bull 26:341–348CrossRefGoogle Scholar
  82. 82.
    Scurati A, Feke DL, Manas-Zloczower I (2005) Analysis of the kinetics of agglomerate erosion in simple shear flows. Chem Eng Sci 60:6564–6573CrossRefGoogle Scholar
  83. 83.
    Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: interplay between build-up and destruction of agglomerates. Polymer 51:201–210CrossRefGoogle Scholar
  84. 84.
    Socher R, Krause B, Boldt R, Hermasch S, Wursche R, Potschke P (2011) Melt mixed nano composites of PA12 with MWNTs: influence of MWNT and matrix properties on macrodispersion and electrical properties. Compos Sci Technol 71:306–314CrossRefGoogle Scholar
  85. 85.
    Socher R, Krause B, Müller MT, Boldt R, Pötschke P (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53:495–504CrossRefGoogle Scholar
  86. 86.
    Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382Google Scholar
  87. 87.
    Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube high density polyethylene composite films. Carbon 41:2779–2785CrossRefGoogle Scholar
  88. 88.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  89. 89.
    Tessonnier J-P, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:824–847CrossRefGoogle Scholar
  90. 90.
    Thomassin J-M, Vuluga D, Alexandre M, Jérôme C, Molenberg I, Huynen I, Detrembleur C (2012) Convenient route for the dispersion of carbon nanotubes in polymers: application to the preparation of electromagnetic interference (EMI) absorbers. Polymer 53:169–174CrossRefGoogle Scholar
  91. 88.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Comp Sci Technol 67:1709–1718CrossRefGoogle Scholar
  92. 92.
    Tokihisa M, Yakemoto K, Sakai T, Utracki LA, Sepehr M, Li J, Simard Y (2006) Extensional flow mixer for polymer nanocomposites. Polym Eng Sci 41:1040–1050CrossRefGoogle Scholar
  93. 93.
    Tu ZC, Ou-Yang ZC (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407CrossRefGoogle Scholar
  94. 94.
    Villmow T, Potschke P, Pegel S, Haussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49:3500–3509CrossRefGoogle Scholar
  95. 95.
    Wagner HD (2002) Nanotube–polymer adhesion: a mechanics approach. Chem Phys Lett 361:57–61CrossRefGoogle Scholar
  96. 96.
    Wichmann MHG, Schulte K, Wagner HD (1998) On nanocomposite toughness. Compos Sci Technol 68 (1):329–331Google Scholar
  97. 97.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(4):314–322CrossRefGoogle Scholar
  98. 98.
    Wu TM, Chen EC (2008) Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology. Comp Sci Technol 68:2254–2259CrossRefGoogle Scholar
  99. 99.
    Xia H, Wang Q, Qiu G (2003) Polymer encapsulated CNTs prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886CrossRefGoogle Scholar
  100. 100.
    Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17:2062–2069CrossRefGoogle Scholar
  101. 101.
    Zhang WD, Shen L, Phang IY, Liu T (2004) CNT reinforced nylon-6 composite prepared by simple melt compounding. Macromolecules 37:256–259CrossRefGoogle Scholar
  102. 102.
    Zou Y, Feng Y, Wang L, Liu X (2004) Processing and properties of MWNT/HDPE composites. Carbon 42:271–277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Institute for Polymers and Composites/i3NUniversity of MinhoGuimarãesPortugal

Personalised recommendations