Advertisement

Metallic Fibers for Composite Applications

  • K. Shabaridharan
  • Amitava Bhattacharyya
Chapter
Part of the Textile Science and Clothing Technology book series (TSCT)

Abstract

Chapter 6 talks about the different types of metallic fibers used in composites materials. Properties of metallic fibers, fabrication of composites, and the properties and application of these composites are discussed in detail.

Keywords

Metal Matrix Composite Polyester Resin Ceramic Fiber Aramid Fiber Metal Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahmed JT (2009) Hybrid composite structures: multifunctionality through metal fibers, PhD thesis, TU Delft. http://repository.tudelft.nl/view/ir/uuid%3A85e91d70-dcf2-47c2-892a-cad116fe845f/. Accessed 17 June 2015
  2. 2.
    Alderliesten R (2009) On the development of hybrid material concepts for aircraft structures. Recent Pat Eng 3:25–38CrossRefGoogle Scholar
  3. 3.
    Asundi A, Alta CYN (1997) Fiber metal laminates: an advanced material for future aircraft. J Mat Process Technol 63:384–394CrossRefGoogle Scholar
  4. 4.
    Barburski M, Lomov S, Lanckmans F, De Ridder F (2014) Steel fiber knitted fabric for automotive glassforming: variations ofthe fabric thickness on the mould and glassoptical quality. J Ind Text. doi: 10.1177/1528083714538685 Google Scholar
  5. 5.
    Bigg DM (1979) Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci 19(1):1188–1192CrossRefGoogle Scholar
  6. 6.
    Bishopp A (2005) Handbook of adhesives and sealants. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Boccaccini AR, Ovenstone J, Trusty PA (1997) Fabrication of woven metal fiber reinforced glass matrix composites. Appl Compos Mater 4:145–155Google Scholar
  8. 8.
    Callens MG, Gorbatikh L, Verpoest I (2014) Ductile steel fiber composites with brittle and ductile matrice. Compos: Part A 61:235–244CrossRefGoogle Scholar
  9. 9.
    Callister WD (1994) Materials science and engineering: an introduction, 3rd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Critchlow GW, Brewis DM (1996) Review of surface pretreatments for aluminium alloys. Int J Adhes Adhes 16:255–275CrossRefGoogle Scholar
  11. 11.
    Critchlow GW, Yendall KA, Bahrani D, Quinn A, Andrews F (2006) Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. Int J Adhes Adhes 26:419–453CrossRefGoogle Scholar
  12. 12.
    Davis M, Bond D (1999) Principles and practices of adhesive bonded structural joints and repairs. Int J Adhes Adhes 19:91–105CrossRefGoogle Scholar
  13. 13.
    Department of Defense Handbook, Composite Materials Handbook, vol 3. Polymer matrix composites, materials usage, design and analysis, USA, 2002Google Scholar
  14. 14.
    Hoskin BC, Baker AA (eds) (1986) Composite materials for aircraft structure, AIAA Education Series. American Institute of Aeronautics and Astronautics Inc., New YorkGoogle Scholar
  15. 15.
    Hwang PW, Chen AP, Li TT, Lou CW, Lin JH (2014) Structure design and property evaluation of silver/stainless steel composite fabric. J Ind Text. doi: 10.1177/1528083714538683 Google Scholar
  16. 16.
    Hwang PW, Chen AP, Lou CW, Lin JH (2014) Electromagnetic shielding effectiveness and functions of stainless steel/bamboo charcoal conductive fabrics. J Ind Text 44:477–494CrossRefGoogle Scholar
  17. 17.
    Krishnasamy J, Alagirusamy R, Das A, Basu A (2014) Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. Ind J fiber Text Res 39:329–342Google Scholar
  18. 18.
    Lee SM (ed) (1990) Encyclopedia of composites, vol 1–4. VCH Publications, New YorkGoogle Scholar
  19. 19.
    Marchini F (1991) Advanced applications of metallized fibers for electrostatic discharge and radiation shielding. J Coat Fabr 20:153–166Google Scholar
  20. 20.
    Ozen MS, Sancak E, Beyit A, Usta I, Akalin M (2013) Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber. Text Res J 83:849–858CrossRefGoogle Scholar
  21. 21.
    Park SY, Choi WJ, Choi HS, Kwon H, Kim SH (2010) Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995–2008). J Adhes 86:192–221CrossRefGoogle Scholar
  22. 22.
    Pemberton SR, Oberg EK, Dean J, Tsarouchas D, Markaki AE, Marston L, Clyne TW (2011) The fracture energy of metal fiber reinforced ceramic composites (MFCs). Compos Sci Technol 71:266–275CrossRefGoogle Scholar
  23. 23.
    Rajendrakumar K, Thilagavathi G (2012) A study on the effect of construction parameters of metallic wire/core spun yarn based knitted fabrics on electromagnetic shielding. J Ind Text 42:400–416CrossRefGoogle Scholar
  24. 24.
    Roh JS, Chi YS, Kang TJ, Nam SW (2008) Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Text Res J 78:825–835CrossRefGoogle Scholar
  25. 25.
    Sinha P K (1995), Composite materials and structures, Composite Centre of Excellence, AR & DB, Department of Aerospace Engineering, I.I.T. Kharagpur, Chapter 2, ebook,  http://www.ae.iitkgp.ernet.in/ebooks/chapter2.html. Accessed 17 June 2015
  26. 26.
    Shima DJ, Alderliesten RC, Spearing SM, Burianek DA (2003) Fatigue crack growth prediction in GLARE hybrid laminates. Compos Sci Technol 63:1759–1767CrossRefGoogle Scholar
  27. 27.
    Sinmazçelik T, Avcu E, Bora MÖ, Çoban O (2011) A review: fiber metal laminates, background, bonding types and applied test methods. Mater Des 32:3671–3685CrossRefGoogle Scholar
  28. 28.
    Smith R (1990) Resin systems, in processing and fabrication technology. In: Bader MG, Smith W, Isham AB, Rolston JA, Metzner AB (eds) Delaware composites design encyclopedia, vol 3. Technomic Publishing Co., Inc. Lancaster, pp 15–84Google Scholar
  29. 29.
    Tezel S, Kavuşturan Y, Vandenbosch Guy AE, Volski V (2014) Comparison of electromagnetic shieldingeffectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques. Text Res J 84:461–476CrossRefGoogle Scholar
  30. 30.
    Toon JJ (1990) Metal fibers and fabrics as shielding materials for composites, missiles and airframes. Electromagnetic compatibility, pp 5–7. In: IEEE International Symposium Record, Washington, DC. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=252722. Accessed 17 June 2015
  31. 31.
    Vogelesang LB, Vlot A (2000) Development of fiber metal laminates for advanced. J Mater Process Technol 103:1–5CrossRefGoogle Scholar
  32. 32.
    Weeton JW, Signorelli RA (1966) Fiber-metal composite materials. National Aeronautics and Space Administration, Washington, DC. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA400428. Accessed 17 June 2015
  33. 33.
    Weeton JW, Peters DM, Thomas KL (eds) (1987) Engineers’ guide to composite materials. American Society for Metals, Metals ParkGoogle Scholar
  34. 34.
    Wilson DM, Visser LR (2000) High performance oxide fibers for metal and ceramic composites. In: Processing of fibers & composites Conference, Barga, Italy. http://www.3m.com/market/industrial/ceramics/pdfs/High_Performance_Oxide_Fibers.pdf. Accessed 17 June 2015
  35. 35.
    Yu ZC, Zhang JF, Lou CW, Lin JH (2015) Investigation and fabrication of multifunctional metal composite knitted fabrics. Text Res J 85:188–199CrossRefGoogle Scholar
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Textile TechnologyBannari Amman Institute of TechnologyErodeIndia
  2. 2.PSG Institute of Advanced StudiesCoimbatoreIndia

Personalised recommendations