Skip to main content

Natural Fibers for Composite Applications

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Abstract

The chapter presents selected vegetable fibers such as flax, hemp, jute, kenaf, abaca, sisal, coir in terms of their properties and short description of commonly applied processes of fiber extraction. Processes of retting and preliminary processing influence fiber quality and related with it appropriate fibre distribution into the matrix, what is responsible for mechanical performance and quality of composites reinforced with vegetable fibres. Vegetable fibers can be used to reinforce composites in the form of loose mass of short fibers, roving, yarn, fabric or nonwoven depending on needs, methods and the type of composite formation. Natural fiber containing composites can be manufactured by almost all production techniques. Chemical and physical modifications of natural fibers are used for increasing adhesion and compatibility between fibers and the polymer matrix. Methods of surface modifications of natural fibres as well as methods of the composites fabrication are discussed along with their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.naturalfibers2009.org

  2. Zimniewska M, Władyka-Przybylak M, Mańkowski J (2011) Cellulosic bast fibers, their structure and properties suitable for composite applications, chapter of book: Cellulose fibers, bio-, and nano- polymer composites. Springer, Germany, pp 97–119

    Google Scholar 

  3. Pickering LK (2008) Properties and performance of natural-fiber composites. Woodhead Publ Ltd 2008:3–66

    Google Scholar 

  4. Townsend T World production of natural and manmade fibers. http://dnfi.org/

  5. CELC & CIPALIN, based on CELC data www.mastersoflinen.com

  6. Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  7. Zimniewska M, Kicinska-Jakubowska A Fact sheet—plant fibers. www.dnfi.org

  8. Mohantya AK, Misraa M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview, macromolecules and material engineering, 2000, 276/277, pp 1–24

    Google Scholar 

  9. Kołodziej J, Mańkowski J, Kubacki A (2007) Właściwości energetyczne odpadów z przerobu lnu i konopi w porównaniu z innymi surowcami roślinnymi. Biuletyn Informacyjny PILiK Len i Konopie nr 6 Poznan: 35–42

    Google Scholar 

  10. Plackett D, Sodergard A (2005) In: Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G (eds) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton, p 569

    Google Scholar 

  11. Sahari J, Sapuan SM (2011) Natural fiber reinforced biodegradable polymer composites. Rev Adv Mater Sci 30:166–174

    Google Scholar 

  12. Coroller G, Lefeuvre A, Le Duigou A, Bourmaud A, Ausias G, Gaudry T, Baley C (2013) Effect of flax fibers individualisation on tensile failure of flax/epoxy unidirectional composite, 2013 Elsevier Ltd. Compos A Appl Sci Manuf 51:62–70

    Article  CAS  Google Scholar 

  13. Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibers and its effect on fiber quality: a review. BioResources 6(4):5260–5281

    Google Scholar 

  14. Czerniak L, Kirkowski R, Kozlowski R, Zimniewska M (1998) The earliest traces of flax textiles in central Europe, Kujawy, Poland, Natural Fibers, Special edn, 1998/1:18–19

    Google Scholar 

  15. Akin DE (2013) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax, vol 2013. Hindawi Publishing Corporation, ISRN Biotechnology. http://dx.doi.org/10.5402/2013/186534

  16. Evans JD, Akin DE, Foulk JA (2002) Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties. J Biotechnol 97:223–231

    Article  CAS  Google Scholar 

  17. Konczewicz W (2015) Physical phenomena occurring in the process of physical-mechanical degumming of fiber from flax straw. Text Res J 85(4):380–390

    Article  CAS  Google Scholar 

  18. Akin DE, Foulk JA, Dodd RB, McAlister III DD (2001) Enzyme-retting of flax and characterization of processed fibers. J Biotechnol 89:193–203

    Google Scholar 

  19. Mooneya C, Stolle-Smits T, Schols H, de Jong E (2001) Analysis of retted and non-retted flax fibers by chemical and enzymatic means. J Biotechnol 89:205–216

    Google Scholar 

  20. Zimniewska M, Frydrych I, Mankowski J, Trywianska W (2013) Process control in natural fiber production. In: Process control in textile manufacturing, woodhead publishing series in textiles, chapter 2: process control in fiber production and yarn manufacture, no 131, pp 81–108

    Google Scholar 

  21. Sponner J, Toth L, Cziger S, Franck RR (2005) Hemp. In: Franck RR (ed) Bast and other plants fibers. Woodhead Publishing in Textiles

    Google Scholar 

  22. Krishnan KB, Doraiswamy I, Chellamani KP (2005) Jute, bast and other plant fibers. In: Franck RR (ed) Woodhead Publishing in Textiles, pp 24–92

    Google Scholar 

  23. Hongqin Yu, Chongwen Yu (2010) Influence of various retting methods on properties of kenaf fiber. J Text Inst 101(5):452–456

    Article  Google Scholar 

  24. Akubueze EU, Ezeanyanaso CS, Orekoya EO, Akinboade DA, Oni F, Muniru SO, Igwe CC (2014) Kenaf fiber (Hibiscus cannabinus L.): a viable alternative to jute fiber (Corchorus genus) for agro-sack production in Nigeria. World J Agric Sci 10(6):308–331

    Google Scholar 

  25. Yu C (2005) Sizal, bast and other plants fibers. In: Franck RR (ed) Woodhead Publishing in Textiles, pp 228–273

    Google Scholar 

  26. Naik RK, Dash RC, Pradhan SC (2013) Sisal fiber extraction: methods and machine development agricultural engineering today, vol 37, Issue 4, pp 27–30

    Google Scholar 

  27. Vijayalakshmi K, Neeraja CYK, Kavitha A, Hayavadana J (2014) Abaca fiber, transactions on engineering and sciences, vol. 2, Issue 9, pp 16–19

    Google Scholar 

  28. Franck RR (2005) Bast and other plants fibers. In: Franck RR (ed) Woodhead Publishing in Textiles, 315–320

    Google Scholar 

  29. Mathai PM (2005) Coir, bast and other plants fibers. In: Franck RR (ed) Woodhead Publishing in Textiles, pp 274–312

    Google Scholar 

  30. FAO: Rolf W (2000) Boehnke, improvement in drying, softening, bleaching, dyeing coir fiber/yarn and in printing coir floor coverings. http://www.fao.org

  31. Umayorubhagan V, Albert GMI, Ray CIS (1995) Physico-chemical analysis of the water of Pottakulam Lake at Thengapattanam in Kanyakumari district (Tamil Nadu). Asian J Chem Rev 6:7–12

    Google Scholar 

  32. Nandan SB, Abdul Azis PK (1995) Benthic polychaetes in anoxic sulfide biomes of the retting zones in the Kadinamkulam Kayal. Int J Environ Stud 47:257–267

    Google Scholar 

  33. Abbasi SA, Nipaney PC (1993) Environmental impact of retting of coconut husk and directions for the development of alternative retting technology. Pollut Res 12:117–118

    CAS  Google Scholar 

  34. Ravindranath AD, US Sarma (1995) Bioinoculants for coir retting, CORD 11:34–38

    Google Scholar 

  35. Zimniewska M, Myalski J, Koziol M, Mankowski J, Bogacz E (2012) Natural fibers textile structures suitable for composite materials. J Nat Fibers 9(4):229–239

    Article  CAS  Google Scholar 

  36. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B 52:172–181

    Article  CAS  Google Scholar 

  37. Zimniewska M, Bogacz E (2009) Preliminary study on flax yarn suitable for composite application. In: Monograph: natural fibers—their attractiveness in multi-directional applications, edited by Gdynia Cotton Association, Gdynia, pp 178–183

    Google Scholar 

  38. Shah DU, Schubel PJ, Clifford MJ, Licence P, Warrior NA (2011) Yarn optimisation and plant fiber surface treatment using hydroxyethylcellulose for the development of structural bio-based composites. In: 18th international conference on composite materials, 2011, Jeju Island, Korea

    Google Scholar 

  39. Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of flax fiber based textile reinforcements for composite applications. Appl Compos Mater 13(4):199–215

    Article  CAS  Google Scholar 

  40. Zimniewska M, Stevenson A, Sapieja A, Kicińska-Jakubowska A (2014) Linen fibers based reinforcements for laminated composites. Fibers Text East Eur 22 3(105):103–108

    Google Scholar 

  41. Krucińska I, Klata E, Ankudowicz W, Dopierała H (2001) Influence of the structure of hybrid yarns on the mechanical proper-ties of thermoplastic composites. Fibers Text East Eur 9(2):38–41

    Google Scholar 

  42. Klata E, Borysiak S, Van de Velde K, Garbarczyk J, Krucińska I (2004) Crystallinity of polyamide-6 matrix in glass fiber/polyamide-6 composites manufactured from hybrid yarns. Fibers Text East Eur 12(3):64–69

    CAS  Google Scholar 

  43. Krucińska I, Gliścińska E, Mäder E, Häßler R (2009) Evaluation of the influence of glass fiber distribution in polyamide matrix during the consolidation process on the mechanical properties of GF/PA6 composites. Fibers Text East Eur 17(1):81–86

    Google Scholar 

  44. Salman SD, Sharba MJ, Leman Z, Sultan MTH, Ishak MR, Cardona F (2015) Physical, mechanical, and morphological properties of woven kenaf/polymer composites produced using a vacuum infusion technique. Int J Polym Sci Article ID 894565. http://www.hindawi.com/journals/ijps/aa/894565/

  45. Kozłowski R, Władyka-Przybylak M, Helwig M, Kurzydłowski K (2004) Composites based on lignocellulosic raw materials. Mol Cryst Liq Cryst 415–418:301–321. ISSN 0888-5885

    Google Scholar 

  46. Faruk O, Bledzki A, Fink H, Sain H (2014) Progress Report on Natural Fiber Reinforced Composites. Macromol Mater Eng 299:9–26

    Article  CAS  Google Scholar 

  47. Young RA (1996) Utilization of natural fibers: characterization, modification and applications. In: Lea AL et al (eds) Lignocellulosic-plastics composites, UNESP, Sao Paulo, Brazil

    Google Scholar 

  48. www.strongwell.com

  49. Iorio I, Leone C, Nele L, Tagliaferri V (1997) Plasma treatments of polymeric materials and Al alloy for adhesive bonding. J Mater Process Technol 68:179–183

    Article  Google Scholar 

  50. Petash W, Räuchle E, Walker M, Elsner P (1995) Improvement of the adhesion of low energy polymers by a short time plasma treatment. Surf Coat Technol 74–75:682–688

    Article  Google Scholar 

  51. Tu X, Young RA, Denes F (1994) Improvement of bonding between cellulose and polypropylene by plasma treatment. Cellulose 1:87–106

    Article  CAS  Google Scholar 

  52. Bledzki A, Gassan J, Lucka M (2000) (in Polish) Renesans tworzyw sztucznych wzmocnionych wloknami naturalnymi (Natural Fiber—Reinforced Polymers Come Back). Polimery 45(2):98–108

    Google Scholar 

  53. Paukszta D (2000) The structure of modified natural fibers used for the preparation the composites with polypropylene. SPIE Int Soc Opt Eng 4240:38–41

    CAS  Google Scholar 

  54. Yanai Y Non-Resin Shrink-Proof Process, Celtopia. Nisshinbo Industries Inc. Miai Plant, Aichi, Japan (unpublished)

    Google Scholar 

  55. Koppers’ Acetylated Wood (1961) New Materials Technical Information No. (RDW-400), E-106

    Google Scholar 

  56. Otlesnov Y, Nikitina N (1977) Latvijas Lauksaimniecibas Akademijas Raksti 130:50

    CAS  Google Scholar 

  57. Sheen AD (1992) The preparation of acetylated wood fiber on a commercial scale. Pacific rim bio-based composites symposium; chemical modification of lignocellulosics. FRI Bulletin 176:1–8

    CAS  Google Scholar 

  58. Beckers EPJ, Militz H (1994) Acetylation of solid wood. In: Second pacific rim bio-based composites symposium, Vancouver Canada, pp 125–134 (1994)

    Google Scholar 

  59. Militz H, Beckers EPJ, Homan WJ (1997) Int. Res. Group Wood Pres., Doc. No. IRG/WP 97–40098

    Google Scholar 

  60. Rowell RM Chemical Modification of Natural Fibers to Improve Performance. This proceedings

    Google Scholar 

  61. Abdalla A, Pickering K (2002) The use of silane as a coupling agent for wood fiber composites. In: Proceedings of the 3rd Asian-Australasian conference on composite materials (ACCM-3), Auckland, New Zealand

    Google Scholar 

  62. Abdalla A, Pickering K, MacDonald AG (2002) Mechanical propierties of thermoplastic matrix composites with silane-treated wood fiber. In: Proceedings of the 6rd international conference on flow processes in composite materials. Auckland, New Zealand

    Google Scholar 

  63. Bledzki AK, Gassan J (1997) Natural fiber reinforced plastics. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, Inc., New York

    Google Scholar 

  64. Kroschwitz JI (1990) Polymers: fibers and textiles. Wiley, New York

    Google Scholar 

  65. Mohanty AK, Patmaik S, Singh BC (1989) J Appl Polym Sci 37:1171

    Article  CAS  Google Scholar 

  66. Escamila G, Trugillo GR, Franco PJH, Mendizabal E, Puig JE (1970) J Polym Sci 66:339

    Google Scholar 

  67. Maldas D, Kokta BV, Daneaulf C (1989) J Appl Polym Sci 37:751

    Google Scholar 

  68. Han GS, Saka S, Shiraisi N (1991) Composites of wood and polypropylene. Morphological study of composites by TEM-EDXA, Mokuzai Gakkaishi 3:241

    Google Scholar 

  69. Kandola BK (2012) Chapter 5: flame retardant characteristics of natural fiber composites. In: Natural polymers: volume 1: composites: eds Maya J John, Sabu Thomas, the royal society of chemistry, vol 1, pp 86–117. ISBN: 978-1-84973-402-8

    Google Scholar 

  70. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23:871–893

    Article  CAS  Google Scholar 

  71. Mngomezulu ME et al (2014) Carbohydrate poymers. Rev Flammabl biofibers biocompos 111:149–182

    Google Scholar 

  72. Sreekala MS, Kumaran MG, Thomas S (2000) Effect of chemical modificatons on the mechanical performance of oil palm fiber reinforced Phenol Foraldehyde Composites. In: Capparelli Mattoso LH et al (eds) Natural polymers and composites. Embrapa Instrumentacao Agropecuaria, Sao Carlos

    Google Scholar 

  73. Nabi Saheb D, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Google Scholar 

  74. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  75. Taj S, Munawar MA, Khan S (2007) Natural fiber reinforced polymer composites. Rev Proc Pak Acad Sci 44(2):129–144

    CAS  Google Scholar 

  76. Monteiro SN, Calado V, Margem FM, Rodriguez RJS ‘Thermogravimetric stability behavior of less common lignocellulosic fibers—a review’. Materials Science Department, Military Institute of Engineering (IME), Rio de Janeiro, Brazil

    Google Scholar 

  77. Pereira PHF, Rosa MF, Cioffi MOH, Benini KCCC, Milanese AC, Voorwald HJC, Mulinari DR (2015) Vegetal fibers in polymeric composites: a review. Polímeros 25(1):9–22

    Article  Google Scholar 

  78. Czaplicka-Kolarz K (2008) Foresight technologiczny materiałów polimerowych w Polsce—analiza stanu zagadnienia. Poznan

    Google Scholar 

  79. Kozłowski R (1997) The potential of natural fibers in Europe. In: Industrial applications lignocellulosic—plastics composites, Sao Paulo, Brasil

    Google Scholar 

  80. Kiziltas A, Gardner DJ Utilization of carpet waste as a matrix in natural filler filled engineering thermoplastic composites for automotive applications. Advanced Engineered Wood Composite (AEWC) Center, University of Maine, Orono, USA

    Google Scholar 

  81. Bos HL (2004) The potential of flax fibers as reinforcement for composite materials. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  82. Ozen E, Kiziltas A, Kiziltas EE, Gardner DJ Natural fiber blends—filled engineering thermoplastic composites for the automobile industry. Advanced Engineered Wood Composite (AEWC) Center, University of Maine, Orono, ME 04469, USA

    Google Scholar 

  83. Sue Elliott-Sink (2005) Special report: cars made of plants. www.edmunds.com/advice/fueleconomy/articles/105341/article.html. Accessed 12 April 2005 (downloaded 28 August 2006)

  84. Jeyanthi S, Janci Rani J (2012) Influence of natural long fiber in mechanical, thermal and recycling properties of thermoplastic composites in automotive components. Int J Phys Sci 7(43):5765–5771

    Google Scholar 

  85. http://www.toyota-boshoku.com/

  86. http://www.bmw.com

  87. http://www.at.ford.com/news/

  88. Vanwalleghem J (2010) Study of the damping and vibration behavior of flax-carbon composite bicycle racing frames. Master in de ingenieurswetenschappen:Werktuigkunde-Elektrotechniek, Faculteit Ingenieurswetenschappen, Universiteit Gent

    Google Scholar 

  89. http://www.museeuw-bicycles.com/technology/

  90. Prasannasrinivas R, Chandramohan D (2012) Analysis of natural fiber reinforced composite material for the helmet outershell—a review. Int J Curr Res 4(03):137–141

    Google Scholar 

  91. http://www.envirotextile.com/pl/natural-fiber-composites

  92. http://thinkgreen.typepad.com/blog/2011/04/chair-natural-fiber.html

  93. Brouwer WD (Rik), Natural fiber composites in structural components: alternative applications for sisal? http://www.fao.org/docrep/004/y1873e/y1873e0a.htm#fn30

  94. www.flaxcomposites.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Zimniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zimniewska, M., Wladyka-Przybylak, M. (2016). Natural Fibers for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics