Skip to main content

Essential Properties of Fibres for Composite Applications

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Abstract

In this chapter, essential properties of fibres required for fabricating good performance composites are presented. Fundamental aspects of these properties and principles of their characterization techniques are discussed. Firstly, the geometrical aspects of fibres (for short and endless fibres) are described. The second part deals with the different types of structures in fibres with respect to molecular orientation mostly responsible for anisotropy of fibres. In the third part, the mechanical properties (especially tensile properties) and failure mechanisms for different types of fibres are discussed and correlated to the structure of the fibres. The following part is concerned with the surface of fibres, which is responsible for the interaction of the fibres with the matrix material in composites and has a large influence on the wetting behavior and adhesion to matrix materials. In the last parts, further physical properties (heat capacity, thermal conductivity, thermomechanical properties and electrical conductivity) and the durability of fibres are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wulfhorst B, Gries T, Veit D (2006) Textile technology. Hanser, Munich

    Book  Google Scholar 

  2. Elices M, Lllorca J (2002) Fiber fracture. Elsevier, Kidlington

    Google Scholar 

  3. Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Pakravan HR, Jamshidi M, Latif M, Pacheco-Torgal F (2012) Influence of acrylic fibers geometry on the mechanical performance of fiber-cement composites. J App Pol Sci 125(4):3050–3057

    Article  CAS  Google Scholar 

  5. Liu X, Wang R, Wu Z, Liu W (2012) The effect of triangle-shape carbon fiber on the flexural properties of the carbon fiber reinforced plastics. Mater Let 73:21–23

    Article  CAS  Google Scholar 

  6. Liu Y, Chae HG, Choi YH (2015) Preparation of low density hollow carbon fibers by bi-component gel-spinning method. J Mater Sci 50:3614–3621

    Article  CAS  Google Scholar 

  7. Houis S, Schreiber F, Gries T (2008) Fiber-Table according to P.-A. Koch. In: Bicomponent fibres, Shaker, Aachen

    Google Scholar 

  8. ASTM D5103—07 (2012) Standard test method for length and length distribution of manufactured staple fibers (Single-Fiber Test)

    Google Scholar 

  9. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin

    Google Scholar 

  10. Ehrenstein GW (2006) Faserverbund-Kunststoffe. Hanser, Munich

    Google Scholar 

  11. DIN 53811: 1970–07. Prüfung von Textilien—Faserdurchmesser-Messung in Mikroprojektion der Längsansicht

    Google Scholar 

  12. DIN EN ISO 1973: 1995–12. Textilien—Fasern—Bestimmung der Feinheit—Gravimetrisches Verfahren und Schwingungsverfahren

    Google Scholar 

  13. Eichhorn S, Hearle JWS, Jaffe M, Kikutani T (2009) Handbook of textile fibre structure: fundamentals and manufactured polymer fibres, vol 1. CRC Press, Boca Raton

    Google Scholar 

  14. Salem DR (2000) Structure formation in polymeric fibers. Hanser, Munich

    Google Scholar 

  15. Steinmann W, Vad T, Seide G, Gries T, Roth G (2012) Simultaneous analysis of structure and orientation in polymeric fibers by wide-angle X-ray diffraction. Paper presented at the MSE2012 materials science and engineering, Darmstadt, 25–29 Sept 2012

    Google Scholar 

  16. Steinmann W, Saelhoff AK, Seide G, Gries T (2014) Analysis of structure formation in carbon fibers: a new method for process development. Paper presented at the ISF 2014 international symposium on fiber science and technology, Tokyo, 28 Sept–1 Oct 2014

    Google Scholar 

  17. Steinmann W, Seide G, Gries T (2014) How carbon fibers can get stronger: structure based process development. Paper presented at AUTEX 2014: 14th World textile conference, Bursa, 26–28 May 2014

    Google Scholar 

  18. Prevorsek D, Oswald H (1990) Melt-spinning of PET and nylon fibers. In: Schultz JM, Fakirov S (eds) Solid state behavior of linear polyesters and polyamides. Prentice Hall, Englewood Cliffs

    Google Scholar 

  19. Bennett SC, Johnson DJ (1978) Strength structure relationships in PAN-based carbon fibres. Paper presented at 5th London international carbon and graphite conference, 1978

    Google Scholar 

  20. Ziabicki A (1976) Fundamentals of fiber formation. Wiley, London

    Google Scholar 

  21. Borchardt-Ott W (2009) Kristallographie: Eine Einführung für Naturwissenschaftler. Springer, Berlin

    Google Scholar 

  22. Schafer et al (1990) High-resolution electron microscopy observations of carbon fibre structures. Acta Polym 41:515–518

    Article  Google Scholar 

  23. ASTM D3822/D3822M—14: Standard test method for tensile properties of single textile fibers

    Google Scholar 

  24. Textechno GmbH (2015) FAVIMAT+ ROBOT2 and AIROBOT2. http://www.textechno.com/index.php/en/fibre-testing-products-65/favimat-robot-products-145. Accessed 16 Jun 2015

  25. ASTM D2343—09 Standard test method for tensile properties of glass fiber strands, yarns, and rovings used in reinforced plastics

    Google Scholar 

  26. ASTM D4018—11 Standard test methods for properties of continuous filament carbon and graphite fiber tows

    Google Scholar 

  27. Anderson J (2015) Tensile strength of single fibers: test methods and data analysis. http://cost-fp0802.tuwien.ac.at/fileadmin/mediapool-cost/Diverse/Stockholm_Workshop/Andersons.pdf. Accessed 16 Jun 2015

  28. Asad RAM, Yu W, Zheng Y, He Y (2015) Characterization of prickle tactile discomfort properties of different textile single fibers using an axial fiber-compression-bending analyzer. Text Res J 85(5):512–523

    Article  CAS  Google Scholar 

  29. Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) Tensile and flexural properties of single carbon fibres. Paper presented at ICCM 17 international committee on composite materials, Edinburgh, 27–31 July 2009

    Google Scholar 

  30. Saelhoff AK, Jäger M, Steinmann W, Gries T (2014) Surface treatment of carbon fibers—increasing the interlaminar shear strength in CFRP. Paper presented at the ADITC2014 Aachen-Dresdner international textile conference, Dresden, 27–28 Nov 2015

    Google Scholar 

  31. Steinmann W, Wulfhorst J, Walter S, Seide G, Gries T (2012) Nanoparticles in polymeric fibers: novel possibilities for the modification of surface, mechanical and electrical properties. Paper presented at the nanoscience conference, Yaiza, 14–17 Feb 2012

    Google Scholar 

  32. Rosiepen C, Beck T, Hehl A, Gries T (2012) Tribology of textiles: challenging carbon fibre processing. Paper presented at the MSE2012 materials science and engineering, Darmstadt, 25–29 Sept 2012

    Google Scholar 

  33. ISO 9277:2010: Determination of the specific surface area of solids by gas adsorption—BET method

    Google Scholar 

  34. Braunauer S, Emmet PH, Teller E (1938) Adsorption of gases in mulitmolecular layers. Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  35. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  36. Cardona M, Ley L (eds) (1979) Photoemission in solids I, II. Topics Appl Phy 1:26–27 (Springer, Berlin)

    Google Scholar 

  37. Hüfner S (1996) Photoelectron spectroscopy, principles and applications. Solid-State Sciences, vol 82. Springer, Berlin

    Google Scholar 

  38. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications, and trends. Wiley, New York

    Google Scholar 

  39. Liebl H (1967) Ion microprobe mass analyzer. J Appl Phys 38:5277–5280

    Article  CAS  Google Scholar 

  40. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. Wiley, Hoboken

    Google Scholar 

  41. Ström G, Fredriksson M, Stenius P (1987) Contact angles, work of adhesion, and interfacial tensions at a dissolving Hydrocarbon surface. J Colloid Interface Sci 119:352–361

    Article  Google Scholar 

  42. Fowkes FM (1964) Predicting attractive forces at interfaces. Ind Eng Chem Res 56:40–53

    Article  CAS  Google Scholar 

  43. Hoecker F, Karger-Kocsis J (1996) Surface energetics of carbon fibers and its effects on the mechanical performance of CF/CP composites. J Appl Polym Sci 59:139–153

    Article  CAS  Google Scholar 

  44. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273

    Article  Google Scholar 

  45. Bruil HG, Aartsen JJ (1974) The determination of contact angles of aqueous surfactant solutions on powders. Colloid Polym Sci 252:32–38

    Article  CAS  Google Scholar 

  46. Drazal L, Madhukar M (1993) Fibre-matrix adhesion and its relationship to composite mechanical properties. J Mater Sci 28:569–610

    Article  Google Scholar 

  47. ISO 14130:1997—Fibre-reinforced plastic composites—determination of apparent interlaminar shear strength by short-beam method

    Google Scholar 

  48. Michaeli W, Fölster T, Klink R, Kocker K (1993) Faserbündel-Pull-Out-Versuch. Kunststoffe 83:65–69

    CAS  Google Scholar 

  49. Bannister DJ, Andrews MC, Cervenka AJ, Young RJ (1995) Analysis of the single-fibre pull-out test by means of Raman spectroscopy: part II. Compos Sci Technol 53:411–421

    Article  CAS  Google Scholar 

  50. Feih S, Wonsyld K, Minzari D, Westermann P, Lilholt H (2004) Testing procedure for the single fiber fragmentation test. Risø National Laboratory, Roskilde

    Google Scholar 

  51. Netravali AN, Henstenburg RB, Phoenix SL, Schwartz P (1989) Interfacial shear strength studies using the single-filament-composite test. Polym Compos 10(4):226–241

    Article  CAS  Google Scholar 

  52. Jäger J, Sause MGR, Burkert F, Moosburger-Will J, Greisel M, Horn S (2015) Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin. Compos A 71:157–167

    Article  Google Scholar 

  53. Greisel M, Jäger J, Moosburger-Will J, Sause MGR, Mueller WM, Horn S (2014) Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests. Compos A 66:117–127

    Article  CAS  Google Scholar 

  54. ISO 10119-2 Carbon fibre—determination of density

    Google Scholar 

  55. Truong M, Zhong W (2009) A comparative study on natural fibre density measurement. J Text Inst 100(6):525–529

    Article  Google Scholar 

  56. GmbH Micromeritics (2010) Highly adaptable density determinations—the AccyPyc II 1340 gas displacement pycnometrie system. Micromeritics GmbH, Mönchengladbach

    Google Scholar 

  57. DIN 51913 Bestimmung der Dichte mit einem Gaspyknometer (volumetrisch) unter Verwendung von Helium als Messgas

    Google Scholar 

  58. Steinmann W, Walter S, Beckers M, Seide G, Gries T (2013) Thermal analysis of phase transitions and crystallization in polymeric fibers. In: Elkordy AA (ed) Applications of calorimetry in a wide contet: differential scanning calorimetry, isothermal titration calorimetry and minicalorimetry. InTech Europe, Rieka, pp 277–306

    Google Scholar 

  59. ASTM D3418 Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry

    Google Scholar 

  60. Takahashi Y (1985) Latent heat measurement by DSC with sapphire as standard material. Thermochim Acta 88(1):199–204

    Article  CAS  Google Scholar 

  61. Shawe JEK, Hütter T, Heitz C, Alig I, Lellinger D (2006) Thermochim Acta 446(1,2):147–155

    Google Scholar 

  62. Wang JL, Gu M, Zhang X, Song Y (2009) Thermal conductivity measurement of an individual fibre using a T type probe method. J Phys D 42:105502–105509

    Article  Google Scholar 

  63. Heine M (1988) Optimierung der Reaktionsbedingungen von thermoplastischen Polymer-Fasern zur Kohlenstoffaser-Herstellung am Beispiel von Polyacrylnitril. Universität Karlsruhe, Dissertation

    Google Scholar 

  64. Steinmann W, Vad T, Weise B, Wulfhorst J, Seide G, Gries T, Heidelmann M, Weirich T (2013) Extrusion of CNT-modified polymers with low viscosity—influence of crystallization and CNT orientation on the electrical properties. J Polym Polym Compos 21(8):473–482

    Google Scholar 

  65. Kilbride M, Pethrick RA (2012) Enhancement of the surface electrical conductivity of thermoplastic composite matrices. J Mater Des Appl 226(3):252–264

    CAS  Google Scholar 

  66. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) (2009) Vermeidung von Zündgefahren infolge elektrostatischer Aufladungen. BAuA, Dortmund

    Google Scholar 

  67. ANSI/ESD S541-2008 For the protection of electrostatic discharge susceptible items: packaging materials for ESD sensitive items

    Google Scholar 

  68. Steinmann W (2014) Elektrisch leitfähige Fasern aus Polymer-Nanoverbundwerkstoffen. RWTH Aachen, Dissertation

    Google Scholar 

  69. Glauß B, Steinmann W, Walter S, Beckers M, Seide G, Gries T, Roth G (2013) Spinnability and characteristics of polyvinylidene fluoride (PVDF)-based bicomponent fibers with a carbon nanotube (CNT) modified polypropylene core for piezoelectric applications. Materials 6(7):2642–2661

    Article  Google Scholar 

  70. Elimat ZM, Hamideen MS, Schulte KI, Wittich H, de la Vega A, Wichmann M, Buschhorn S (2010) Dielectric properties of epoxy/short carbon fiber composites. J Mater Sci 45:5196–5203

    Article  CAS  Google Scholar 

  71. ASTM D3850 Test method for rapid thermal degradation of solid electrical insulating materials by thermogravimetric method (TGA)

    Google Scholar 

  72. Gude M, Hufenbach W, Koch I, Koschichow R, Schulte K, Knoll J (2013) Fatigue testing of carbon fibre reinforced polymers under VHCF loading. Procedia Mater Sci 2:18–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Steinmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Steinmann, W., Saelhoff, AK. (2016). Essential Properties of Fibres for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics