Skip to main content

The Pupil as Marker of Cognitive Processes

  • Chapter
  • First Online:
Computational and Cognitive Neuroscience of Vision

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Of all peripheral measures of (neuro-)physiological activity, pupil size is probably the easiest to access. Far beyond its well-known reaction to light incident on the eye, pupil size is a rich marker of many cognitive processes. Since the turn of the millennium, the increasing availability of video-based eyetracking devices has led to a renaissance of pupillometry as research technique in the cognitive neurosciences. The chapter reviews recent developments in this field. How do emotional and cognitive factors, attention and memory, influence pupil size? What is the role of the pupil in social interactions and which applications of pupillometry are currently envisioned? How can pupillometry be combined with other techniques? And what are the limits, pitfalls and caveats when using the pupil as marker of cognitive processes?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboyoun DC, Dabbs JN (1998) The hess pupil dilation findings: sex or novelty? Soc Behav Pers 26(4):415–419

    Article  Google Scholar 

  • Amemiya S, Ohtomo K (2012) Effect of the observed pupil size on the amygdala of the beholders. Soc Cogn Affect Neurosci 7:332–341. doi:10.1093/scan/nsr013

    Article  Google Scholar 

  • Astafiev SV, Snyder AZ, Shulman GL, Corbetta M (2010) Comment on “Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI” and “Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area”. Science 328(5976):309. doi:10.1126/science.1177200

    Article  Google Scholar 

  • Bárány H, Halldén U (1948) Phasic inhibition of the light reflex of the pupil during retinal rivlary. J Neurophysiol 11(1):25–30

    Google Scholar 

  • Berrien FK, Huntington GH (1943) An exploratory study of pupillary responses during deception. J Exp Psychol 32(5):443–449

    Article  Google Scholar 

  • Beatty J, Wagoner BL (1978) Pupillometric signs of brain activation vary with level of cognitive processing. Science 199(4334):1216–1218

    Article  Google Scholar 

  • Beatty J (1982) Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol Bull 91(2):276–292

    Article  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. doi:10.1016/j.brainresrev.2007.10.013

    Article  Google Scholar 

  • Binda P, Pereverzeva M, Murray SO (2013) Attention to bright surfaces enhances the pupillary light reflex. J Neurosci 33:2199–2204

    Article  Google Scholar 

  • Binda P, Murray SO (2015) Spatial attention increases the pupillary response to light changes. J Vis 15(2):1. doi:10.1167/15.2.1

    Article  Google Scholar 

  • Binda P, Pereverzeva M, Murray SO (2014) Pupil size reflects the focus of feature-based attention. J Neurophysiol 112(12):3046–3052. http://dx.doi.org/10.1152/jn.00502.2014

  • Bijleveld E, Custers R, Aarts H (2009) The unconscious eye opener: pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward. cues. Psychol Sci 20(11):1313–1315. doi:10.1111/j.1467-9280.2009.02443.x

    Article  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (2002) Relationship of the ‘fear-inhibited light reflex’ to the level of state/trait anxiety in healthy subjects. Int J Psychophysiol 43(2):177–184

    Article  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (2004) The fear-inhibited light reflex: importance of the anticipation of an aversive event. Int J Psychophysiol 52(1):87–95

    Article  Google Scholar 

  • Boersma F, Wilton K, Barham R, Muir W (1970) Effects of arithmetic problem difficulty on pupillary dilation in normals and educable retardates. J Exp Child Psychol 9(2):142–155

    Article  Google Scholar 

  • Bradley MM, Miccoli L, Escrig MA, Lang PJ (2008) The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45:602–607

    Article  Google Scholar 

  • Bradshaw J (1967) Pupil size as a measure of arousal during information processing. Nature 216(5114):515–516

    Article  Google Scholar 

  • Briand KA, Strallow D, Hening W, Poizner H, Sereno AB (1999) Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res 129:38–48

    Article  Google Scholar 

  • Brisson J, Mainville M, Mailloux D, Beaulieu C, Serres J, Sirois S (2013) Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behav Res Meth 45(4):1322–31. doi:10.3758/s13428-013-0327-0

  • Bull R, Shead G (1979) Pupil dilation, sex of stimulus, and age and sex of observer. Percept Mot Skills 49(1):27–30

    Article  Google Scholar 

  • Burkhouse KL, Siegle GJ, Gibb BE (2014) Pupillary reactivity to emotional stimuli in children of depressed and anxious mothers. J Child Psychol Psychiatry 55(9):1009–1016. doi:10.1111/jcpp.12225

    Article  Google Scholar 

  • Campbell FW, Gregory AH (1960) Effect of size of pupil on visual acuity. Nature 187:1121–1123

    Article  Google Scholar 

  • Chapman CR, Oka S, Bradshaw DH, Jacobson RC, Donaldson GW (1999) Phasic pupil dilation response to noxious stimulation in normal volunteers: relationship to brain evoked potentials and pain report. Psychophysiology 36(1):44–52

    Article  Google Scholar 

  • Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G (2004) Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci 24(44):9914–9920

    Article  Google Scholar 

  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754

    Article  Google Scholar 

  • Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879

    Article  Google Scholar 

  • Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events. Network 17(4):335–350

    Article  Google Scholar 

  • Demos KE, Kelley WM, Ryan SL, Davis FC, Whalen PJ (2008) Human amygdala sensitivity to the pupil size of others. Cereb Cortex 18:2729–2734

    Article  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837

    Article  Google Scholar 

  • Einhäuser W, Stout J, Koch C, Carter O (2008) Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA 105(5):1704–1709. doi:10.1073/pnas.0707727105

    Article  Google Scholar 

  • Einhäuser W, Koch C, Carter OL (2010) Pupil dilation betrays the timing of decisions. Front Hum Neurosci 4:18. doi:10.3389/fnhum.2010.00018

    Google Scholar 

  • Fahle MW, Stemmler T, Spang KM (2011) How much of the “unconscious” is just pre -threshold? Front Hum Neurosci 5:120. doi:10.3389/fnhum.2011.00120

    Article  Google Scholar 

  • Felmingham KL, Rennie C, Manor B, Bryant RA (2011) Eye tracking and physiological reactivity to threatening stimuli in posttraumatic stress disorder. J Anxiety Disord 25(5):668–673. doi:10.1016/j.janxdis.2011.02.010

    Article  Google Scholar 

  • Fish SC, Granholm E (2008) Easier tasks can have higher processing loads: task difficulty and cognitive resource limitations in schizophrenia. J Abnorm Psychol 117(2):355–363

    Article  Google Scholar 

  • Fountoulakis KN, St Kaprinis G, Fotiou F (2004) Is there a role for pupillometry in the diagnostic approach of Alzheimer’s disease? A review of the data. J Am Geriatr Soc 52(1):166–168

    Article  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    Article  Google Scholar 

  • Friedman D, Hakerem G, Sutton S, Fleiss JL (1973) Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalogr Clin Neurophysiol 34(5):475–484

    Article  Google Scholar 

  • Gagl B, Hawelka S, Hutzler F (2011) Systematic influence of gaze position on pupil size measurement: analysis and correction. Behav Res Meth 43(4):1171–1181. doi:10.3758/s13428-011-0109-5

    Article  Google Scholar 

  • Garcia-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, Leu-Semenescu S, Gallea C, Quattrocchi G, Pita Lobo P, Poupon C, Benali H, Arnulf I, Vidailhet M, Lehericy S (2013) The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 136:2120–2129

    Article  Google Scholar 

  • Geuter S, Gamer M, Onat S, Büchel C (2014) Parametric trial-by-trial prediction of pain by easily available physiological measures. Pain 155(5):994–1001

    Article  Google Scholar 

  • Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD (2010) Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci 10(2):252–269. doi:10.3758/CABN.10.2.252

    Article  Google Scholar 

  • Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Karlovasitou A (2011) Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int J Neurosci 121(1):37–43. doi:10.3109/00207454.2010.526730

    Article  Google Scholar 

  • Granholm E, Morris SK, Sarkin AJ, Asarnow RF, Jeste DV (1997) Pupillary responses index overload of working memory resources in schizophrenia. J Abnorm Psychol 106(3):458–467

    Article  Google Scholar 

  • Granholm E, Verney SP (2004) Pupillary responses and attentional allocation problems on the backward masking task in schizophrenia. Int J Psychophysiol 52(1):37–51

    Article  Google Scholar 

  • Harrison NA, Singer T, Rotshtein P, Dolan RJ, Critchley HD (2006) Pupillary contagion: central mechanisms engaged in sadness processing. Soc Cogn Affect Neurosci 1:5–17

    Article  Google Scholar 

  • Harrison NA, Gray MA, Critchley HD (2009) Dynamic pupillary exchange engages brain regions encoding social salience. Soc Neurosci 4:233–243. doi:10.1080/17470910802553508

    Article  Google Scholar 

  • Hayes TR, Petrov AA (2015) Mapping and correcting the influence of gaze position on pupil size measurements. Behav Res Meth

    Google Scholar 

  • Heaver B, Hutton SB (2011) Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory 19(4):398–405. doi:10.1080/09658211.2011.575788

    Article  Google Scholar 

  • Hess EH, Polt JM (1960) Pupil size as related to interest value of visual stimuli. Science 132(3423):349–350

    Article  Google Scholar 

  • Hess EH, Polt JM (1964) Pupil size in relation to mental activity during simple problem-solving. Science 143:1190–1192. doi:10.1126/science.143.3611.1190

    Article  Google Scholar 

  • Hess EH (1965) Attitude and pupil size. Sci Am 212:46–54

    Article  Google Scholar 

  • Hess EH, Petrovich SB (1987) Pupillary behavior in communication. In: Siegman AW, Feldstein S (eds) Nonverbal behavior and communication. Hillsdale, NJ, Lawrence Erlbaum

    Google Scholar 

  • Hupé JM, Lamirel C, Lorenceau J (2009) Pupil dynamics during bistable motion perception. J Vis 9(7):10. doi:10.1167/9.7.10

    Article  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual-attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  • Janisse MP (1974) Pupil size, affect and exposure frequency. Soc Behav Pers 2:125–146

    Article  Google Scholar 

  • James W (1890) The principles of psychology. Holt, NewYork

    Book  Google Scholar 

  • Jepma M, Nieuwenhuis S (2011) Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J Cogn Neurosci 23(7):1587–1596. doi:10.1162/jocn.2010.21548

    Article  Google Scholar 

  • Kahneman D, Beatty J (1966) Pupil diameter and load on memory. Science 154(3756):1583–1585

    Article  Google Scholar 

  • Kalwani RM, Gold JI (2008) The role of the locus coeruleus in motor commitment using the countermanding task. Soc Neurosci Abstr 165–169

    Google Scholar 

  • Kamp SM, Donchin E (2015) ERP and pupil responses to deviance in an oddball paradigm. Psychophysiology 52(4):460–471. doi:10.1111/psyp.12378

    Article  Google Scholar 

  • Kafkas A, Montaldi D (2011) Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity. Q J Exp Psychol (Hove) 64(10):1971–1989

    Article  Google Scholar 

  • Kietzmann TC, Geuter S, König P (2011) Overt visual attention as a causal factor of perceptual awareness. PLoS ONE 6(7):e22614. doi:10.1371/journal.pone.0022614

    Article  Google Scholar 

  • Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383(6597):256–259

    Article  Google Scholar 

  • Kojima T, Matsushima E, Ohta K, Toru M, Han YH, Shen YC, Moussaoui D, David I, Sato K, Yamashita I, Kathmann N, Hippius H, Thavundayil JX, Lal S, Vasavan Nair NP, Potkin SG, Prilipko L (2001) Stability of exploratory eye movements as a marker of schizophrenia—a WHO multi-center study. Schizophr Res 52:203–213. doi:10.1016/S0920-9964(00)00181-X

    Article  Google Scholar 

  • Kloosterman NA, Meindertsma T, van Loon AM, Lamme VA, Bonneh YS, Donner TH (2015) Pupil size tracks perceptual content and surprise. Eur J Neurosci 41(8):1068–1078. doi:10.1111/ejn.12859

    Article  Google Scholar 

  • Kristjansson SD, Stern JA, Brown TB, Rohrbaugh JW (2009) Detecting phasic lapses in alertness using pupillometric measures. Appl Ergon 40(6):978–986. doi:10.1016/j.apergo.2009.04.007

    Article  Google Scholar 

  • Laeng B, Endestad T (2012) Bright illusions reduce the eye’s pupil. Proc Natl Acad Sci USA 109(6):2162–2167. doi:10.1073/pnas.1118298109

    Article  Google Scholar 

  • Laeng B, Sulutvedt U (2014) The eye pupil adjusts to imaginary light. Psychol Sci 25(1):188–197. doi:10.1177/0956797613503556

    Article  Google Scholar 

  • Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106 (Pt 3):623–642

    Google Scholar 

  • Libby WL Jr, Lacey BC, Lacey JI (1973) Pupillary and cardiac activity during visual attention. Psychophysiology 10(3):270–294

    Article  Google Scholar 

  • Loewenfeld I (1993) The pupil: Anatomy, physiology, and clinical applications. Wayne State University Press, Detroit, MI

    Google Scholar 

  • Lorber M, Zuber BL, Stark L (1965) Suppression of pupillary light reflex in binocular rivalry and saccadic suppression. Nature 208:558

    Article  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247

    Article  Google Scholar 

  • Magliero A (1983) Pupil dilations following pairs of identical and related to-be-remembered words. Mem Cognit 11(6):609–615

    Article  Google Scholar 

  • Mathôt S, van der Linden L, Grainger J, Vitu F (2015a) The pupillary light response reflects eye-movement preparation. J Exp Psychol Hum Percept Perform 41(1):28–35. doi:10.1037/a0038653

    Article  Google Scholar 

  • Mathôt S, van der Linden L, Grainger J, Vitu F (2013) The pupillary light response reveals the focus of covert visual attention. PLoS One 8(10):e78168. doi:10.1371/journal.pone.0078168. eCollection 2013

  • Mathôt S, Siebold A, Donk M, Vitu F (2015b) Large pupils predict goal-driven eye movements. J Exp Psychol Gen 144(3):513–521

    Google Scholar 

  • May PR (1948) Pupillary abnormalities in schizophrenia and during muscular effort. J Ment Sci 94:89–98

    Google Scholar 

  • van der Meer E, Friedrich M, Nuthmann A, Stelzel C, Kuchinke L (2003) Picture-word matching: flexibility in conceptual memory and pupillary responses. Psychophysiology 40(6):904–913

    Article  Google Scholar 

  • van der Meer E, Beyer R, Horn J, Foth M, Bornemann B, Ries J, Kramer J, Warmuth E, Heekeren HR, Wartenburger I (2010) Resource allocation and fluidintelligence: insights from pupillometry. Psychophysiology 47(1):158–169. doi:10.1111/j.1469-8986.2009.00884.x

    Article  Google Scholar 

  • Micieli G, Tassorelli C, Martignoni E, Pacchetti C, Bruggi P, Magri M, Nappi G (1991) Disordered pupil reactivity in Parkinson’s disease. Clin Auton Res 1(1):55–58

    Article  Google Scholar 

  • Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci USA May 14; 93(10):4770–4774

    Google Scholar 

  • Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH (2014) Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp 35(8):4140–4154. doi:10.1002/hbm.22466

    Article  Google Scholar 

  • Murphy PR, Robertson IH, Balsters JH, O’Connell RG (2011) Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48(11):1532–1543. doi:10.1111/j.1469-8986.2011.01226.x

  • Naber M, Frässle S, Einhäuser W (2011) Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PLoS ONE 6(6):e20910

    Article  Google Scholar 

  • Naber M, Hilger M, Einhäuser W (2012) Animal detection and identification in natural scenes: image statistics and emotional valence. J Vis 12(1):25. doi:10.1167/12.1.25

  • Naber M, Stoll J, Einhäuser W, Carter O (2013a) How to become a mentalist: reading decisions from a competitor’s pupil can be achieved without training but requires instruction. PLoS ONE 8(8):e73302

    Article  Google Scholar 

  • Naber M, Nakayama K (2013) Pupil responses to high-level image content. J Vis 13(6):7. doi:10.1167/13.6.7

  • Naber M, Alvarez GA, Nakayama K (2013b) Tracking the allocation of attention using human pupillary oscillations. Front Psychol 4:919. doi:10.3389/fpsyg.2013.00919

  • Naber M, Frässle S, Rutishauser U, Einhäuser W (2013c) Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J Vis 13(2):11. doi:10.1167/13.2.11

  • Nagai M, Wada M, Sunaga N (2002) Trait anxiety affects the pupillary light reflex in college students. Neurosci Lett 328(1):68–70

    Article  Google Scholar 

  • Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI (2012) Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15(7):1040–1046. doi:10.1038/nn.3130

    Article  Google Scholar 

  • Nuthmann A, van der Meer E (2005) Time’s arrow and pupillary response. Psychophysiology 42(3):306–317

    Article  Google Scholar 

  • Otero SC, Weekes BS, Hutton SB (2011) Pupil size changes during recognition memory. Psychophysiology 4:1346–1353

    Article  Google Scholar 

  • Papesh MH, Goldinger SD, Hout MC (2012) Memory strength and specificity revealed by pupillometry. Int J Psychophysiol 83(1):56–64. doi:10.1016/j.ijpsycho.2011.10.002

    Article  Google Scholar 

  • Park JC, McAnany JJ (2015) Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex. J Vis 15(3):13. doi:10.1167/15.3.13

  • Partala T, Surakka V (2003) Pupil size variation as an indication of affective processing. Int J Human-Comput Stud 59:185–198

    Article  Google Scholar 

  • Paulus FM, Krach S, Blanke M, Roth C, Belke M, Sommer J, Müller-Pinzler L, Menzler K, Jansen A, Rosenow F, Bremmer F, Einhäuser W, Knake S (2015) Fronto-insula network activity explains emotional dysfunctions in juvenile myoclonic epilepsy: combined evidence from pupillometry and fMRI. Cortex 65C:219–231

    Article  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Poock GK (1973) Information processing versus pupil diameter. Percept Mot Skills 37(3):1000–1002

    Article  Google Scholar 

  • Prettyman R, Bitsios P, Szabadi E (1997) Altered pupillary size and darkness and light reflexes in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 62(6):665–668

    Article  Google Scholar 

  • Preuschoff K, ‘t Hart BM, Einhäuser W (2011) Pupil dilation signals surprise: evidence for noradrenaline’s role in decision making. Front Neurosci 5:115. doi:10.3389/fnins.2011.00115

  • Privitera CM, Renninger LW, Carney T, Klein S, Aguilar M (2010) Pupil dilation during visual target detection. J Vis 10(10):3. doi:10.1167/10.10.3

    Article  Google Scholar 

  • Qiyuan J, Richer F, Wagoner BL, Beatty J (1985) The pupil and stimulus probability. Psychophysiology 22(5):530–534

    Article  Google Scholar 

  • Raisig S, Welke T, Hagendorf H, van der Meer E (2010) I spy with my little eye: detection of temporal violations in event sequences and the pupillary response. Int J Psychophysiol 76(1):1–8. doi:10.1016/j.ijpsycho.2010.01.006

    Article  Google Scholar 

  • Rajkowski J, Kubiak P, Aston-Jones G (1993) Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc Neurosci Abstr 19:974

    Google Scholar 

  • Reinhard G, Lachnit H, König S (2006) Tracking stimulus processing in Pavlovian pupillary conditioning. Psychophysiology 43(1):73–83

    Article  Google Scholar 

  • Rieger G, Savin-Williams RC (2012) The eyes have it: sex and sexual orientation differences in pupil dilation patterns. PLoS ONE 7(8):e40256. doi:10.1371/journal.pone.0040256

    Article  Google Scholar 

  • Scheepers C, Mohr S, Fischer MH, Roberts AM (2013) Listening to limericks: a pupillometry investigation of perceivers’ expectancy. PLoS ONE 8(9):e74986. doi:10.1371/journal.pone.0074986

    Article  Google Scholar 

  • Samuels ER, Szabadi E (2008a) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6(3):235–253. doi:10.2174/157015908785777229

    Article  Google Scholar 

  • Samuels ER, Szabadi E (2008b) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6(3):254–285. doi:10.2174/157015908785777193

    Article  Google Scholar 

  • Schaefer HS, Larson CL, Davidson RJ, Coan JA (2014) Brain, body, and cognition: neural, physiological and self-report correlates of phobic and normative fear. Biol Psychol 98:59–69. doi:10.1016/j.biopsycho.2013.12.011

    Article  Google Scholar 

  • Siegle GJ, Steinhauer SR, Stenger VA, Konecky R, Carter CS (2003) Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage 20(1):114–124

    Article  Google Scholar 

  • Simms TM (1967) Pupillary response of male and female subjects to pupillary differences in male and female picture stimuli

    Google Scholar 

  • Simpson HM, Hale SM (1969) Pupillary changes during a decision-making task. Percept Mot Skills 29(2):495–498

    Article  Google Scholar 

  • Simpson HM, Molloy FM (1971) Effects of audience anxiety on pupil size. Psychophysiology 8:491–496. doi:10.1111/j.1469-8986.1971.tb00481.x

    Article  Google Scholar 

  • Steinhauer SR, Zubin J (1982) Vulnerability to schizophrenia: information processing in the pupil and event-related potential. In: Usdin E, Hanin I (eds) Biological markers in psvchiatrv and neurology. Pergamon Press, Oxford, pp 371–385

    Chapter  Google Scholar 

  • Steinhauer SR, Hakerem G (1992) The pupillary response in cognitive psychophysiology and schizophrenia. Ann N Y Acad Sci 658:182–204

    Article  Google Scholar 

  • Steinhauer SR (2002) Cognition, psychopathology, and recent pupil studies. www.wpic.pitt.edu/research/biometrics/Publications/PupilWeb.htm. Retrieved 12 Aug 2016

  • Steinhauer SR, Siegle GJ, Condray J, Pless M (2004) Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int Psychophysiol 53:77–86

    Google Scholar 

  • Sterpenich V, D’Argembeau A, Desseilles M, Balteau E, Albouy G, Vandewalle G, Degueldre C, Luxen A, Collette F, Maquet P (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26:7416–7423

    Article  Google Scholar 

  • Tombs S, Silverman I (2004) Pupillometry—a sexual selection approach. Evol Human Behav 25:221–228

    Article  Google Scholar 

  • Tomlinson N, Hicks RA, Pellegrini (1978) Attributions of female college students to variations in pupil size. Bull Psychon Soc 12(6):477–478

    Google Scholar 

  • Tursky B, Shapiro D, Crider A, Kahneman D (1969) Pupillary, heart rate, and skin resistance changes during a mental task. J Exp Psychol 79(1):164–167

    Article  Google Scholar 

  • Ursin H, Kaada BR (1960) Functional localization within the amygdaloid complex in the cat. Electroencephalogr Clin Neurophysiol 12:1–20

    Article  Google Scholar 

  • Võ ML, Jacobs AM, Kuchinke L, Hofmann M, Conrad M, Schacht A, Hutzler F (2008) The coupling of emotion and cognition in the eye: introducing the pupil old/new effect. Psychophysiology 45(1):130–140

    Google Scholar 

  • Wang JT, Spezio M, Camerer CF (2006) Pinocchio’s pupil: using eyetracking and pupil dilation to understand truth-telling and deception in games. Am Econ Rev 100:984–1007

    Article  Google Scholar 

  • Wang CA, Boehnke SE, White BJ, Munoz DP (2012) Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades. J Neurosci 14 32(11):3629–3636. doi:10.1523/JNEUROSCI.5512-11.2012

  • Wang CA, Boehnke SE, Itti L, Munoz DP (2014) Transient pupil response is modulated by contrast-based saliency. J Neurosci 34(2):408–417. doi:10.1523/JNEUROSCI.3550-13.2014

    Article  Google Scholar 

  • Wang CA, Brien DC, Munoz DP (2015) Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur J Neurosci 41(8):1102–1110. doi:10.1111/ejn.12883

    Article  Google Scholar 

  • Wang CA, Munoz DP (2015) A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol 33:134–140. doi:10.1016/j.conb.2015.03.018

    Article  Google Scholar 

  • Watson AB, Yellott JI (2012) A unified formula for light-adapted pupil size. J Vis 12(10):12. doi:10.1167/12.10.12

    Article  Google Scholar 

  • Yellin D, Berkovich-Ohana A, Malach R (2015) Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 1(106):414–427. doi:10.1016/j.neuroimage.2014.11.034

    Article  Google Scholar 

  • Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–692

    Article  Google Scholar 

  • Zekveld AA, Kramer SE (2014) Cognitive processing load across a wide range of listening conditions: insights from pupillometry. Psychophysiology 51(3):277–284

    Article  Google Scholar 

  • Zekveld AA, Heslenfeld DJ, Johnsrude IS, Versfeld NJ, Kramer SE (2014) The eye as a window to the listening brain: neural correlates of pupil size as a measure of cognitive listening load. Neuroimage 101:76–86. doi:10.1016/j.neuroimage.2014.06.069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Einhäuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Einhäuser, W. (2017). The Pupil as Marker of Cognitive Processes. In: Zhao, Q. (eds) Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0213-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0213-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0211-3

  • Online ISBN: 978-981-10-0213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics