Skip to main content

Biosurfactant Producing Bacteria from Hydrocarbon Contaminated Environment

  • Chapter
  • First Online:
Biodegradation and Bioconversion of Hydrocarbons

Abstract

As a result of global industrialization and increasing population there has been an alarming increase in the global demands for energy which is being fulfilled by exploiting various natural resources significantly hydrocarbons. As a result enormous amounts of hydrocarbons and hydrocarbon-based products have been released into the environment, threatening health and sustainability of the ecosystem. These different types of hydrocarbon-contaminated environments vary in their microbial composition and serve as an excellent reservoir of microbial flora, with a potential to degrade hydrocarbons and produce biosurfactants. In this chapter, an overview of biosurfactant-producing microorganisms from hydrocarbon-contaminated environments and their role in utilisation and degradation of hydrocarbon compounds is presented. Micro-organisms growing in hydrocarbon-rich environments undergo many adaptations, such as production of biosurfactants, which increases access to these hydrophobic substrates. Industrially, biosurfactants, which constitute as a group of surface-active amphiphilic compounds, are of great significance as they are biodegradable and nontoxic compared to synthetic chemical surfactants. Thus, biosurfactants have found wide applications and are used in bioremediation, oil exploration and enhanced recovery, health care, oil and food processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150(3):305–325

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336

    Article  CAS  Google Scholar 

  • Abouseoud M, Maachi R, Amrane B, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223(1–3):143–151

    Article  CAS  Google Scholar 

  • Adams RH, Castillo-Acosta O, Escalante-Espinosa E, Zavala-Cruz J (2011) Natural attenuation and phytoremediation of petroleum hydrocarbon impacted soil in tropical wetland environments. In: Torres LG, Bandala ER (eds) Remediation of soils and aquifers. Nova Publishers, New York, pp 1–24

    Google Scholar 

  • Affandi IE, Suratman NH, Abdullah S, Ahmad WA, Zakaria ZA (2014) Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. Int Biodeterior Biodegradation. doi:10.1016/j.ibiod.2014.04.009

    Google Scholar 

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333

    Article  CAS  Google Scholar 

  • Amani H (2015) Study of enhanced oil recovery by rhamnolipids in a homogeneous 2D micromodel. J Pet Sci Eng 128:212–219

    Article  CAS  Google Scholar 

  • Amezcua-Vega C, Ferrera-Cerrato R, Esparza-Garcia F, Rios-Leal E, Rodriguez-Vazquez R (2004) Effect of combined nutrients on biosurfactant produced by Pseudomonas putida. J Environ Sci Health A Tox Hazard Subst Environ Eng. 39(11–12):2983–2991

    Article  CAS  Google Scholar 

  • Amin GA (2014) Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis. Water Sci Technol 70(2):234–240

    Article  CAS  Google Scholar 

  • Ammami MT, Portet-Koltalo B, Duclairoir-Poc W, LeDerf F (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dregraded marine sediments. Chemosphere 125:1–8

    Article  CAS  Google Scholar 

  • Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D (2002) Specific activation of the Bacillus quorum sensing systems by isoprenylated pheromone variants. Mol Microbiol 44:1561–1573

    Article  CAS  Google Scholar 

  • Aparna A, Srinikethan G, Smitha H (2011) Effect of Addition of Biosurfactant Produced by Pseudomonas sp. on biodegradation of crude oil. In: Second international conference on environmental science and technology, vol 6, IPCBEE Singapore, IACSIT Press

    Google Scholar 

  • Assadi M, Rostamza M, Noohi AS, Levin M, Shahamati M (2004) Rhamnolipid production by Pseudomonas aerogiosa MM1011 from sugar beet molasses. Asian J Microbiol Biotech Environ Sci 6(2):203–207

    CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Int 6(40):959–978

    Article  CAS  Google Scholar 

  • Ayed HB, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation 99:8–14

    Article  CAS  Google Scholar 

  • Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotech Lett 18:263–268

    CAS  Google Scholar 

  • Bacon SK, Palmer TM, Grossman AD (2002) Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 184:410–419

    Article  CAS  Google Scholar 

  • Bak F, Bonnichsen L, Jorgensen NO, Nicolaisen MH, Nybroe O (2015) The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 99(3):1475–1483

    Article  CAS  Google Scholar 

  • Banat IM, De Rienzo MA, Quinn GA (2014a) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929

    Article  CAS  Google Scholar 

  • Banat IM, Makkar SR, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014b) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697. doi:10.3389/fmicb.2014.00697

    Article  Google Scholar 

  • Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L (2014) Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci Process Impacts 16(4):897–903

    Article  CAS  Google Scholar 

  • Barros FF, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35(9):1071–1078

    Article  CAS  Google Scholar 

  • Bento MF, Camargo FA, Okeke BC, FrankenbergerJr WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160(3):249–255

    Article  CAS  Google Scholar 

  • Bhadoriya SS, Madoriya N, Shukla K, Parihar MS (2013) Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol. doi:10.4172/2167-0501.1000113

    Google Scholar 

  • Bharali P, Konwar BK (2011) Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl Biochem Biotechnol 164(8):1444–1460

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170(1):495–505

    Article  CAS  Google Scholar 

  • BP Statistical Review of World Energy June (2015) http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html

  • Burgos-Diaz C, Pons R, Espuny MJ, Aranda FJ, Teruel JA, Manresa A, Ortiz A, Marques AM (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interface Sci 361(1):195–204

    Article  CAS  Google Scholar 

  • Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86(1–2):402–410

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82(1):97–116

    Article  CAS  Google Scholar 

  • Campos JM, Stamford TL, Sarubbo LA, DeLuna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29(5):1097–1108

    Article  CAS  Google Scholar 

  • Campos JM, Stamford TL, Sarubbo LA (2014) Production of a bioemulsifier with potential application in the food industry. Appl Biochem Biotechnol 172(6):3234–3252

    Article  CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228

    Article  CAS  Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F, Camargo FA, Peralba Mdo C, Bento FM (2011) Bio-prospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbiol Biotechnol 28(3):1203–1222

    Article  CAS  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199

    Article  CAS  Google Scholar 

  • Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MMF (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    Article  CAS  Google Scholar 

  • Chandankere R, Yao J, Choi MMF, Masakorala K, Chan Y (2013) An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochem Eng J 74:46–53

    Article  CAS  Google Scholar 

  • Chang JS, Cha DK, Radosevich M, Jin Y (2015) Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(6):611–616

    CAS  Google Scholar 

  • Chang JS, Chou CL, Lin GH, Sheu SY, Chen WM (2005) Pseudoxanthomonas kaohsiungensis, sp. nov, a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28(2):137–144

    Article  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72(1):25–33

    Article  CAS  Google Scholar 

  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666

    Article  CAS  Google Scholar 

  • Chen YC, Chiang TJ, Liang TW, Wang IL, Wang SL (2012) Reclamation of squid pen by Bacillus licheniformis TKU004 for the production of thermally stable and antimicrobial biosurfactant. Biocatal Agric Biotechnol 1(1):62–69

    CAS  Google Scholar 

  • Cheng KY, Zhao ZY, Wong JW (2004) Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol 25(10):1159–1165

    Article  CAS  Google Scholar 

  • Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173(2):624–645

    Article  CAS  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93(6):915–929

    Article  CAS  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170(3):676–689

    Article  CAS  Google Scholar 

  • Chtioui O, Dimitrov K, Gancel F, Nikov I (2010) Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochem 45(11):1795–1799

    Article  CAS  Google Scholar 

  • Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11:125–130

    Google Scholar 

  • Comella N, Grossman AD (2005) Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol Microbiol 57(4):1159–1174

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North East India. Bioresour Technol 98(7):1339–1345

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. doi:10.4061/2011/941810

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008a) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Gen Eng Rev 25:165–186

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008b) Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Lett Appl Microbiol 48(3):281–288

    Google Scholar 

  • Daverey A, Pakshirajan K, Sangeetha P (2009) Sophorolipids production by Candida bombicola using synthetic dairy wastewater. Int J Civ Environ Eng 1:4

    Google Scholar 

  • De Faria AF, Teodoro-Martinez DS, Barbosa GND, Vaz BG, Silva IS, Garcia JS, Totola MR, Eberlin MN, Grossman M, Alves OL, Durrant LR (2011) Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46(10):1951–1957

    Article  CAS  Google Scholar 

  • Deepak R, Jayapradha R (2015) Lipopeptide biosurfactant from Bacillus thuringiensis pak 2310 A potential antagonist against Fusarium oxysporum. J Med Mycol 25(1):15–24

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonasaeruginosa:3-(3- hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 149:2005–2013

    Article  CAS  Google Scholar 

  • Swaranjit DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  Google Scholar 

  • Diaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. doi:10.1016/j.nbt.2015.02.009

    Google Scholar 

  • Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomeserine lactone production and virulence gene expression. J Bacteriol 184(10):2576–2586

    Article  CAS  Google Scholar 

  • Donio MB, Ronica SF, Viji VT, Velmurugan S, Jenifer JA, Michaelbabu M, Citarasu T (2013) Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac J Trop Med 6(11):876–883

    Article  CAS  Google Scholar 

  • Duarte C, Gudina EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40. doi:10.1186/s13568-014-0040-0

    Article  CAS  Google Scholar 

  • Dubey K, Juwarkar A (2001) Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 17(1):61–69

    Article  CAS  Google Scholar 

  • Dumont MJ, Narine SS (2007) Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Res Int 40(8):957–974

    Article  CAS  Google Scholar 

  • Dusane DH, Zinzarde SS, Venugopolan VP, Mclean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implication on rhamnolipid biosurfactant production. Biotechnol Gen Eng Rev 27:159–184

    Article  CAS  Google Scholar 

  • Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S (2012) Characterization of a novel biosurfactant produced by Staphylococcus sp. 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 52(4):408–418

    Article  CAS  Google Scholar 

  • El-Sheshtawy HS, Khalil NM, Ahmed W, Abdallah RI (2014) Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles. Mar Pollut Bull 87(1–2):191–200

    Article  CAS  Google Scholar 

  • Ferhat S, Mnif S, Badisa A, Eddouaoudaa K, Alouaouic R, Boucherita A, Mhirib N, Moulai-Mostefac N, Sayadi S (2011) Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int Biodeterior Biodegradation 65:1182–1188

    Article  CAS  Google Scholar 

  • Folmsbee M, Duncan K, Han SO, Nagle D, Jennings E, McInerney M (2006) Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Syst Appl Microbiol 29(8):645–649

    Article  CAS  Google Scholar 

  • Fonseca RR, Silva AJ, DeFranca FP, Cardoso VL, Servulo EF (2007) Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol 137–140(1–12):471–486

    Google Scholar 

  • Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry: a mini review. Am J Drug Discov Dev 1(1):58–69

    Article  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. doi:10.4061/2011/653654

    Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980

    Article  CAS  Google Scholar 

  • Gogotov IN, Khodakov RS (2008) Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources. Prikl Biokhim Mikrobiol 44:207–212

    CAS  Google Scholar 

  • Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E, Gutnick DL (1982) Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting Material. Appl Environ Microbiol 44(1):165–170

    CAS  Google Scholar 

  • Goswami D, Handique PJ, Deka S (2014) Rhamnolipid biosurfactant against Fusarium sacchari the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol 54(6):548–557

    Article  CAS  Google Scholar 

  • Grand View Research (2014) Biosurfactants market analysis by product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) and segment forecast To 2020 Published: April 2014|ISBN Code: 978-1-68038-012-5. http://www.grandviewresearch.com/industry-analysis/biosurfactants-industry

  • Gudina EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015a) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59. doi:10.3389/fmicb.2015.00059

    Google Scholar 

  • Gudina EJ, Pereira JF, Costa R, Evtuguin DV, Coutinho JA, Teixeira JA, Rodrigues LR (2015b) Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 14:14. doi:10.1186/s12934-015-0197-5

    Article  CAS  Google Scholar 

  • Gudina EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015c) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93

    Article  CAS  Google Scholar 

  • Gurjar M, Khire JM, Khan MI (1995) Bioemulsifier production by Bacillus stearothermophilus VR8 isolate. Lett Appl Microbiol 21:83–86

    Article  CAS  Google Scholar 

  • Gutnick DL, Bayer EA, Rubinovitz C, Pines O, Shabtai Y, Goldman S, Rosenberg E (1980) Emulsan production in Acinetobacter RAG-1. Adv Biotechnol 11:455–459

    Google Scholar 

  • Hachaichi Z, Tazerouti A, Hacene H (2014) Growth kinetics study of a bacterial consortium producing biosurfactants, constructed with six strains isolated from an oily sludge. Adv Biosci Biotechnol 5:418–425

    Article  CAS  Google Scholar 

  • Haddadin MSY, AbouArqoub A, AbuReesh I, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manag 50:983–990

    Article  CAS  Google Scholar 

  • Hao DH, Lin JQ, Lin XSJ, Su YJ, Qu YB (2008) Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3. Biotechnol Biopro Eng 13(1):61–68

    Article  CAS  Google Scholar 

  • Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull 86(1–2):361–366

    Article  CAS  Google Scholar 

  • Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64(1):7–12

    Article  CAS  Google Scholar 

  • Hausmann R, Syldatk C (2014) Types and classification of microbial surfactants. In: Kosaric N, Sukan FV (eds) Biosurfactant production and utilization—processes, technologies, and economics, vol 159. CRC Press, London, pp 3–18

    Google Scholar 

  • Hazra C, Kundu D, Chaudhari A (2014) Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. Res Adv 5:2974–2982

    Google Scholar 

  • Hemlata B, Selvin J, Tukaram K (2015) Optimization of iron chelating biosurfactant production by Stenotrophomonas maltophilia NBS-11. Biocatal Agric Biotechnol 4:135–143

    Google Scholar 

  • Hommel RK, Ratledge C (1993) Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker Inc, New York, pp 3–63

    Google Scholar 

  • Hori K, Ichinohec R, Unnoc H, Marsudid S (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J53:196–202

    Article  CAS  Google Scholar 

  • Hudak AJ, Cassidy DP (2004) Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen. Biotechnol Bioeng 88(7):861–868

    Article  CAS  Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas sp isolated from a tropical environment. Chemosphere 61(7):985–992

    Article  CAS  Google Scholar 

  • Ismail W, Al-rowaihi IS, Al-humam AA, Hamza RY, El AM, Bououdina M (2013) Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeterior Biodegradation 84:168–178

    Article  CAS  Google Scholar 

  • Ismail W, Shammary SA, El-Sayed WS, El-Sayed WS, Obuekwec C, El-Nayal AM, Raheema ASA, Al-Humam A (2015) Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources. Biotechnol Reports 7:55–63

    Article  Google Scholar 

  • Jain RM, Mody K, Mishra A, Jha B (2012) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr Polym 87(3):2320–2326

    Article  CAS  Google Scholar 

  • Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp. evaluation of different carbon sources. Colloids Surf B Biointerfaces 108:199–204

    Article  CAS  Google Scholar 

  • Jamal P, Mir S, Alam MZ, Wan Nawawi WM (2014) Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation. J Oleo Sci 63(8):795–804

    Article  CAS  Google Scholar 

  • Janek T, Krasowska A, Radwanska A, Lukaszewicz M (2013) Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS ONE 8(3):e57991. doi:10.1371/journal.pone.0057991

    Article  CAS  Google Scholar 

  • Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24. doi:10.1186/1471-2180

    Article  CAS  Google Scholar 

  • Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61(28):6786–6791

    Article  CAS  Google Scholar 

  • Jara AM, Andrade RF, Campos-Takaki GM (2013) physicochemical characterization of tensio-active produced by Geobacillus stearothermophilus isolated from petroleum-contaminated soil. Colloids Surf B: Biointerfaces 101:315–318

    Article  CAS  Google Scholar 

  • Jennings EM, Tanner RS (2000) Biosurfactant-producing bacteria found in contaminated and uncontaminated soils. In: Proceedings of 2000 conference hazardous waste research, University of Oklahoma, pp 299–306

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll 133(1):71–84

    Article  CAS  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–1999

    Article  CAS  Google Scholar 

  • Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int. doi:10.1155/2013/512495

    Google Scholar 

  • Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91(1):64–70

    Article  CAS  Google Scholar 

  • Kavitha V, Mandal AB, Gnanamani A (2014) Microbial biosurfactant mediated removal and or solubilization of crude oil contamination from soil and aqueous phase: an approach with Bacillus licheniformis MTCC 5514. Int Biodeterior Biodegradation 94:24–30

    Article  CAS  Google Scholar 

  • Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 3:198–204

    Article  CAS  Google Scholar 

  • Konishi M, Yoshida Y, Horiuchi J (2015) Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J Biosci Bioeng 119(3):317–322

    Article  CAS  Google Scholar 

  • Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog 28(6):1507–1516

    Article  CAS  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47(12):2463–2471

    Article  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74(1–3):59–70

    Article  CAS  Google Scholar 

  • Lenchi N, Inceoglu O, Kebbouche-Gana S, Gana ML, Lliros M, Servais P, Garcia-Armisen T (2013) Diversity of microbial communities in production and injection waters of algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS ONE 8(6):e66588. doi:10.1371/journal.pone.0066588

    Article  CAS  Google Scholar 

  • Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163(5):600–611

    Article  CAS  Google Scholar 

  • Liang TW, Wu CC, Cheng WT, Chen YC, Wang CL, Wang IL, Wang SL (2014) Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 172(2):933–950

    Article  CAS  Google Scholar 

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16(3):4814–4837

    Article  CAS  Google Scholar 

  • Liu W, Wang X, Wu L, Chen M, Tu C, Luo Y, Christie P (2012) Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87(10):1105–1110

    Article  CAS  Google Scholar 

  • Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces 69(2):183–193

    Article  CAS  Google Scholar 

  • Maciel BM, Dias JCT, Santos ACF, Argolo Filho RC, Fontana R, Loguercio LL, Rezende RP (2007) Microbial surfactant activities from a petrochemical land farm in a humid tropical region of Brazil. Can J Microbiol 53(8):937–943

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18(1):37–42

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (2002) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45 C. J Surfactants Deterg 5(1):11–7

    Google Scholar 

  • Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 13:152. doi:10.1186/1471-2180-13-152

    Article  CAS  Google Scholar 

  • Maneerat S (2005) Production of biosurfactant from renewable resources. Songklanakarin J Sci Technol 27(3):675–683

    Google Scholar 

  • Manivasagan P, Sivasankar P, Venkatesan J, Sivakumar K, Kim SK (2014) Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 5:783–797

    Article  CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2014) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  Google Scholar 

  • Maqsood MI, Jamal A (2011) Factors affecting the rhamnolipid biosurfactant production. Pak J Biotechnol 8(1):1–5

    Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34(9):1597–1605

    Article  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitates group activities in a prokaryote. Nature 437:422–425

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155(4):249–256

    Article  CAS  Google Scholar 

  • Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684

    CAS  Google Scholar 

  • Miao S, Dashtbozorg SS, Callow NV, Ju LK (2015) Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. J Agric Food Chem 63:3367–3376

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104(3):129–147

    Article  CAS  Google Scholar 

  • Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield selected bacteria. J Appl Microbiol 111(3):525–536

    Article  CAS  Google Scholar 

  • Montagnolli RN, Lopes PR, Bidoia ED (2015) Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess 187(1):4116

    Article  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Natl Sci Acad B 70(1):31–55

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: Properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D (2011) Colloids and Surfaces B: Biointerfaces Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids Surf B Biointerfaces 82(1):33–39

    Article  CAS  Google Scholar 

  • Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z (2010) Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem Eng J 163(3):188–194

    Article  CAS  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72(1):165–173

    Article  CAS  Google Scholar 

  • Noparat P, Maneerat S, Saimmai A (2014) Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World J Microbiol Biotechnol 3:865–877

    Article  CAS  Google Scholar 

  • Oliveira FJS, Vazquez L, De Campos NP, De Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389

    Article  CAS  Google Scholar 

  • Onwosi CO, Odibo FJ (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942

    Article  CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Pansiripat S, Pornsunthorntawee O, Rujiravanit R, Kitiyanan B, Somboonthanate P, Chavadej S (2010) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effect of oil-to-glucose ratio. Biochem Eng J 49:185–191

    Article  CAS  Google Scholar 

  • Park E, Kim J (2015) Characteristics of culture conditions for the production of biosurfactant by Bacillus pumilus IJ-1. J Appl Biol Chem 58:81–88

    Article  Google Scholar 

  • Parthasarathi R, Sivakumaar PK (2009) Effect of different carbon sources on the production of biosurfactant by pseudomonas fluorescens isolated from mangrove forests (Pichavaram) Tamil Nadu India. Glob J Environ Res 3(2):99–101

    CAS  Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res. doi:10.4061/2011/475193

    Google Scholar 

  • Perfumo A, Rancich I, Banat IM (2010) Possibilities and challenges for biosurfactants use in petroleum industry. Adv Exp Med Biol 672:135–145

    Article  CAS  Google Scholar 

  • Persson A, Molin G, Andersson N, Sjoholm J (1990) Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system. Biotechnol Bioeng 36(3):252–255

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563

    Article  CAS  Google Scholar 

  • Pirog TP, Konon AD, Beregovaya KA, Shulyakova MA (2014) Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiol 83(6):732–739

    Article  CAS  Google Scholar 

  • Pirog TP, Shevchuk TA, Oiu M, Parfeniuk SA, Iutinskaia GA (2013) Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241. Mikrobiol Z 75(5):18–26

    CAS  Google Scholar 

  • Poomtein J, Thaniyavarn J, Pinphanichakarn P, Jindamorakot M (2013) Production and characterization of a biosurfactant from Cyberlindnera samutprakarnensis JP52. Biosci Biotechnol Biochem 77(12):2362–2370

    Article  CAS  Google Scholar 

  • Pornsunthorntawee O, Arttaweeporn N, Paisanjit S (2008a) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42(2):172–179

    Article  CAS  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008b) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99(6):1589–1595

    Article  CAS  Google Scholar 

  • Portilla-Rivera O, Torrado A, Domilnguez JM, Moldes AB (2008) Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J Agric Food Chem 56:8074–8080

    Article  CAS  Google Scholar 

  • Prabhawathi V, Thirunavukarasu K, Doble M (2014) A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant. Mater Sci Eng C Mater Biol Appl 40:212–218. doi:10.1016/j.msec.2014.03.050

    Article  CAS  Google Scholar 

  • Pradhan AK, Pradhan N, Mohapatra P, Kundu CN, Panda PK, Mishra BK (2014) Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis. Appl Biochem Biotechnol 174(5):1850–1858

    Article  CAS  Google Scholar 

  • Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae an Antarctic strain. World J Microbiol Biotechnol 13:137–139

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002a) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 6:1277–1281

    Article  CAS  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002b) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42:286–293

    Article  Google Scholar 

  • Rapp P, Gabriel-Jurgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiol 149:2879–2890

    Article  CAS  Google Scholar 

  • Ray S (2012) Optimization of process conditions for biosurfactant production from mutant strain of Bacillus sp. (m28) in a 5l laboratory fermenter. J Microbiol Biotech Res 2(3):431–439

    CAS  Google Scholar 

  • Raza ZA, Khan MS, Khalid ZM, Rehman A (2006) Production of Biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Z Naturforsch 61(1–2):87–94

    CAS  Google Scholar 

  • Reis RS, Pereira AG, Neves BC, Freira DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas: a review. Biores Technol 102:6377–6384

    Article  CAS  Google Scholar 

  • Ribeiro IA, Faustino CM, Guerreiro PS, Frade RF, Bronze MR, Castro MF, Ribeiro MH (2015) Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells. J Mol Recognit. doi:10.1002/jmr.2403

    Google Scholar 

  • Rizzo C, Michaud L, Hormann B, Gerçe B, Syldatk C, Hausmann R, De Domenico E, Lo Giudice A (2013) Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar Pollut Bull 70(1–2):125–133

    Article  CAS  Google Scholar 

  • Rocha CA, Pedregosa AM, Laborda F (2011) Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925. AMB Express. doi:10.1186/2191-0855-1-9

    Google Scholar 

  • Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano sized drug delivery vectors. J Colloid Interface Sci 1:304–316

    Article  CAS  Google Scholar 

  • Roldan-Carrillo T, Martinez-Garcia X, Zapata-Penasco I, Castorena-Cortes G, Reyes-Avila J, Mayol-Castillo M, Olguin-Lora P (2011) Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design. Colloids Surf B Biointerfaces 86(2):384–389

    Article  CAS  Google Scholar 

  • Rufino RD, De Luna JM, De Campos Takaki GM, Sarubbo LS (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic J Biotechnol 17:34–38

    Article  CAS  Google Scholar 

  • Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6(5):493–502

    Article  CAS  Google Scholar 

  • Saikia RR, Deka H, Goswami D, Lahkar J, Borah SN, Patowary K, Baruah P, Deka S (2014) Achieving the best yield in glycolipid biosurfactant preparation by selecting the proper carbon/nitrogen ratio. J Surfact Det 17(3):563–571

    Article  CAS  Google Scholar 

  • Saikia RR, Deka S, Deka M, Sarma H (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52:446–457

    Article  CAS  Google Scholar 

  • Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S (2012) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 28(10):2973–2986

    Article  CAS  Google Scholar 

  • Sana S, Bhattacharya M, Datta S, Biswas D (2015) RSM study for the production of rhamnolipid using Catla catla Fish fat. Int J Curr Microbiol App Sci 4(1):169–178

    Google Scholar 

  • Sandrin C, Peypoux F, Michel G (1990) Co-production of surfactin and iturin A, lipopetides with surfactant and antifungal properties by Bacillussubtilis. Biotechnol Appl Biochem 12:370–375

    CAS  Google Scholar 

  • Sanket KG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4(1):1–8

    Google Scholar 

  • Schmidberger A, Henkel M, Hausmann R, Schwartz T (2014) Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 98(15):6725–6737

    Article  CAS  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134

    CAS  Google Scholar 

  • Sharafi H, Abdoli M, Hajfarajollah H, Samie N, Alidoust L, Abbasi H, Fooladi J, Zahiri HS, Noghabi KA (2014) First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site. Appl Biochem Biotechnol 173(5):1236–1249

    Article  CAS  Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci W J. doi:10.1155/2014/493548

    Google Scholar 

  • Sharma D, Singh SB (2014) Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol. doi:10.1155/2014/698713

    Google Scholar 

  • Sierra-Garcıa IN, Alvarez CJ, Vasconcellos SP, Souza AP, Neto EV (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS ONE. doi:10.1371/journal.pone.0090087

    Google Scholar 

  • Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res Int 20(10):7367–7376

    Article  CAS  Google Scholar 

  • Singh AK, Rautela R, Cameotra SS (2014a) Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb Cell Fact 13:67. doi:10.1186/1475-2859-13-67

    Article  CAS  Google Scholar 

  • Singh BN, Rawat AK, Khan W, Naqvi AH, Singh BR (2014b) Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS ONE 9(9):e106937. doi:10.1371/journal.pone.0106937

    Article  CAS  Google Scholar 

  • Soberon-Chavez G, Maier RM (2011) Biosurfactants: a general overview. In: Soberon-Chavez G (ed) Biosurfactants. Springer, Berlin, pp 1–11

    Chapter  Google Scholar 

  • Solaiman DKY, Ashby RD, Crocker NV (2015) High-titer production and strong antimicrobial activity of sophorolipids from Rhodotorula bogoriensis. Biotechnol Prog. doi:10.1002/btpr.2101

    Google Scholar 

  • Sousa M, Melo VM, Rodrigues S, Santana HB, Goncalves LR (2012) Screening of biosurfactant producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng 35(6):897–906

    Article  CAS  Google Scholar 

  • Sriram MI, Gayathiri S, Gnanaselvi U, Jenifer PS, Mohan Raj S, Gurunathan S (2011) Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour Technol 102(19):9291–9295

    Article  CAS  Google Scholar 

  • Stipcevic T, Knight CP, Kippin TE (2013) Stimulation of adult neural stem cells with a novel glycolipid biosurfactant. Acta Neurol Belg 113(4):501–506

    Article  Google Scholar 

  • Striebich RC, Smart CE, Gunasekera TS, Susan SM, Ellen MS, Brett WM, Oscar NR (2014) Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. Int Biodeterior Biodegradation 93:33–43

    Article  CAS  Google Scholar 

  • Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9:263–269

    Article  CAS  Google Scholar 

  • Syldatk C, Wagner F (1987) Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology. Marcel Dekker, New York, pp 89–120

    Google Scholar 

  • Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M, Kanaya S (2006) Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J Gen Appl Microbiol 52:215–222

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    Article  CAS  Google Scholar 

  • Valentin L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Vicent J et al (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment, vol 24. Springer, Berlin, pp 1–30

    Chapter  Google Scholar 

  • Vanavil B, Perumalsamy M, Rao AS (2013) Biosurfactant production from novel air isolate P. aeruginosa NITT6L: screening, characterization and optimization of media. J Microbiol Biotechnol 23:1229–1243

    Article  CAS  Google Scholar 

  • VanBogaert INA, Ciesielska K, Devreese B, Soetaert W (2014) Sophorolipids: Microbial synthesis and application. In: Kosaric N, Sukan FV (eds) Biosurfactant production and utilization—processes, technologies, and economics, vol 159. CRC Press, London, pp 19–36

    Google Scholar 

  • Van-Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their usein removing hydrophobic compounds from soil. Can J Microbiol 39(11):1071–1078

    Article  CAS  Google Scholar 

  • Varadavenkatesan T, Murty VR (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. doi:10.1155/2013/621519

    Google Scholar 

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol. doi:10.1111/lam.12440

    Google Scholar 

  • Velioglu Z, Ozturk Urek R (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J Biosci Bioeng. doi:10.1016/j.jbiosc.2015.03.007

    Google Scholar 

  • Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils into surface-active di-, tri- and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid Lett 101:389–394

    Article  CAS  Google Scholar 

  • Wang XB, Nie Y, Tang YQ, Wu G, Wu XL (2013) n-Alkane chain length alters Dietzia sp. strain DQ12-45-1b biosurfactant production and cell surface activity. Appl Environ Microbiol 79(1):400–402

    Article  CAS  Google Scholar 

  • Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154

    Article  CAS  Google Scholar 

  • Willenbacher J, Rau J, Rogalla J, Syldatk C, Hausmann R (2015) Foam-free production of surfactin via anaerobic fermentation of Bacillus subtilis DSM 10. AMB Express 5:21. doi:10.1186/s13568-015-0107-6

    Article  CAS  Google Scholar 

  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99(5):1157–1164

    Article  CAS  Google Scholar 

  • Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498

    Article  CAS  Google Scholar 

  • Xia W, Zhi-Bin L, Han-Ping D, Li Y, Qing-Feng C, Yong-Qiang B (2012) Biosynthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl Biochem Biotechnol 166:1148–1166

    Article  CAS  Google Scholar 

  • Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44(3):302–308

    Article  CAS  Google Scholar 

  • Yoshida S, Koitabashi M, Nakamura J, Fukuoka T, Sakai H, Abe M, Kitamoto D, Kitamoto H (2015) Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. J Appl Microbiol 119(1):215–224

    Article  CAS  Google Scholar 

  • Yu H, Huang GH, An CJ, Wei J (2011) Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system. J Hazard Mater 190:883–890

    Article  CAS  Google Scholar 

  • Yu H, Huang GH, Xiao H, Wang L, Chen W (2014) Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems. Environ Sci Pollut Res Int 21(17):10536–10549

    Article  CAS  Google Scholar 

  • Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72

    Article  CAS  Google Scholar 

  • Zhang L, Veres- Schalnat TA, Somogyi A (2012) Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol 78:8611–8622

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Wang Q, Chen X, Li H, Wei J, Xu G (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegradation 87:99–105

    Article  CAS  Google Scholar 

  • Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C (2015) Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38(2):756–764

    Article  CAS  Google Scholar 

  • Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118(2):379–389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Joy, S., Butalia, T., Sharma, S., Rahman, P.K.S.M. (2017). Biosurfactant Producing Bacteria from Hydrocarbon Contaminated Environment. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_8

Download citation

Publish with us

Policies and ethics