Skip to main content

HC-0B-05: Two-Phase Partitioning Bioreactors for Treatment of Volatile Hydrocarbons

  • Chapter
  • First Online:
Biodegradation and Bioconversion of Hydrocarbons

Abstract

Nowadays air pollutants are becoming more widespread as the pace of industrial activity accelerates. Emission inventories reveal that atmospheric pollutant emissions have continuously increased since the beginning of the twentieth century, with volatile organic compounds (VOCs) representing about 7 % of these emissions. Despite this relatively low emission share, VOC emissions represent a major environmental and human health problem since most VOCs can be toxic depending on the concentration and exposure time and they also contribute to substantial damage to natural ecosystems. The negative effects of VOCs on human health and natural ecosystems have therefore led to stricter environmental regulations worldwide. VOCs emitted from industrial facilities are usually volatile hydrocarbons (VHs), which are extensively used in manufacturing processes. Among the available technologies for VHs treatment, biological processes in many cases constitute the most cost-effective technology for treating low pollutant concentrations and their implementation at industrial scale is growing exponentially. Unfortunately, several VHs can produce toxic effects to the microbial communities, leading to inhibition issues as in the case of aromatic compounds. Furthermore, some VHs used as monomers in the plastics industry or as industrial solvents exhibit a very low aqueous solubility, leading to mass transfer issues and poor removal performance. Two-phase partitioning bioreactors (TPPBs) emerged as innovative multiphase systems capable of overcoming the key limitations of traditional biological technologies such as the low mass transfer rates of hydrophobic VOCs and microbial inhibition at high pollutant loading rates. This work presents an updated state-of-the-art on the advances of TPPB technology for the treatment of VHs. The fundamentals of TPPB design, operation, microbiology and mass transfer are reviewed. Niches for future research, opportunities for TPPB optimization and challenges towards full-scale applications are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonsín C, Lebrero R, Estrada JM et al (2015) Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment. J Environ Manage 149:77–84. doi:10.1016/j.jenvman.2014.10.011

    Article  Google Scholar 

  • Arriaga S, Muñoz R, Hernández S et al (2006) Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environ Sci Technol 40:2390–2395. doi:10.1021/es051512m

    Article  CAS  Google Scholar 

  • Ascon-Cabrera M, Lebeault J-M (1993) Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Envir Microbiol 59:1717–1724

    CAS  Google Scholar 

  • Ascon-Cabrera MA, Lebeault J-M (1995) Cell hydrophobicity influencing the activity/stability of xenobiotic-degrading microorganisms in a continuous biphasic aqueous-organic system. J Ferment Bioeng 80:270–275. doi:10.1016/0922-338X(95)90828-N

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101. doi:10.1016/S1352-2310(99)00460-4

    Article  CAS  Google Scholar 

  • Bailón L, Nikolausz M, Kästner M et al (2009) Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Res 43:11–20. doi:10.1016/j.watres.2008.09.031

    Article  Google Scholar 

  • Baumann MD, Daugulis AJ, Jessop PG (2005) Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol 67:131–137. doi:10.1007/s00253-004-1768-2

    Article  CAS  Google Scholar 

  • Boudreau NG, Daugulis AJ (2006) Transient performance of two-phase partitioning bioreactors treating a toluene contaminated gas stream. Biotechnol Bioeng 94:448–457. doi:10.1002/bit.20876

    Article  CAS  Google Scholar 

  • Bowker RP (2000) Biological odour control by diffusion into activated sludge basins. Water Sci Technol 41:127–132

    CAS  Google Scholar 

  • Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124. doi:10.1021/bp00008a006

    Article  CAS  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi:10.1016/S0734-9750(00)00058-6

    Article  CAS  Google Scholar 

  • Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849. doi:10.1007/s00253-011-3191-9

    Article  CAS  Google Scholar 

  • Cesario MT, Beeftink HH, Tramper J (1992) Biological treatment of waste gases containing poorly-water soluble compounds. In: Dragt AJ, van Ham J (eds) Biotech. Air Pollut. Abat. Odour Control Policies. Elsevier Science Publishers, Amsterdam, pp 135–140

    Google Scholar 

  • Cesário MT, Beverloo WA, Tramper J, Beeftink HH (1997) Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme Microb Technol 21:578–588. doi:10.1016/S0141-0229(97)00069-0

    Article  Google Scholar 

  • Clarke KG, Williams PC, Smit MS, Harrison STL (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem Eng J 28:237–242. doi:10.1016/j.bej.2005.11.007

    Article  CAS  Google Scholar 

  • Cox HHJ, Deshusses MA (2001) Biotrickling Filters. In: Kennes C, Veiga MC (eds) Bioreact. Waste Gas Treat. Kluwer, Dordrecht, pp 99–131

    Chapter  Google Scholar 

  • Darracq G, Couvert A, Couriol C et al (2010a) Integrated process for hydrophobic VOC treatment-solvent choice. Can J Chem Eng. doi:10.1002/cjce.20325

    Google Scholar 

  • Darracq G, Couvert A, Couriol C et al (2010b) Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol 85:309–313. doi:10.1002/jctb.2331

    Article  CAS  Google Scholar 

  • Darracq G, Couvert A, Couriol C et al (2012) Activated sludge acclimation for hydrophobic VOC removal in a two-phase partitioning reactor. Water Air Soil Pollut 223:3117–3124. doi:10.1007/s11270-012-1094-8

    Article  CAS  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462. doi:10.1016/S0167-7799(01)01789-9

    Article  CAS  Google Scholar 

  • Daugulis AJ, Tomei MC, Guieysse B (2011) Overcoming substrate inhibition during biological treatment of monoaromatics: recent advances in bioprocess design. Appl Microbiol Biotechnol 90:1589–1608. doi:10.1007/s00253-011-3229-z

    Article  CAS  Google Scholar 

  • Davidson CT, Daugulis AJ (2003) Addressing biofilter limitations: a two-phase partitioning bioreactor process for the treatment of benzene and toluene contaminated gas streams. Biodegradation 14:415–421. doi:10.1023/A:1027363526518

    Article  CAS  Google Scholar 

  • Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72. doi:10.1080/07388550590935814

    Article  Google Scholar 

  • Djeribi R, Dezenclos T, Pauss A, Lebeault J-M (2005) Removal of styrene from waste gas using a biological trickling filter. Eng Life Sci 5:450–457. doi:10.1002/elsc.200520092

    Article  CAS  Google Scholar 

  • Dorado AD, Dumont E, Muñoz R, Quijano G (2015) A novel mathematical approach for the understanding and optimization of two-phase partitioning bioreactors devoted to air pollution control. Chem Eng J 263:239–248. doi:10.1016/j.cej.2014.11.014

    Article  CAS  Google Scholar 

  • Dumont E, Andrès Y (2012) Styrene absorption in water/silicone oil mixtures. Chem Eng J 200–202:81–90. doi:10.1016/j.cej.2012.06.028

    Article  Google Scholar 

  • Dumont E, Andrès Y, Le Cloirec P (2006) Effect of organic solvents on oxygen mass transfer in multiphase systems: application to bioreactors in environmental protection. Biochem Eng J 30:245–252. doi:10.1016/j.bej.2006.05.003

    Article  CAS  Google Scholar 

  • Dumont E, Andrès Y, Le Cloirec P (2014) Mass transfer coefficients of styrene into water/silicone oil mixtures: new interpretation using the “equivalent absorption capacity” concept. Chem Eng J 237:236–241. doi:10.1016/j.cej.2013.10.021

    Article  CAS  Google Scholar 

  • Easter C, Quigley C, Burrowes P et al (2005) Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem Eng J 113:93–104. doi:10.1016/j.cej.2005.04.007

    Article  CAS  Google Scholar 

  • EEA, European Environmental Agency (2014) European Union emission inventory report 1990–2012 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). http://www.eea.europa.eu/publications/lrtap-2014

  • Estrada JM, Kraakman NJRB, Lebrero R, Muñoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363. doi:10.1016/j.biotechadv.2012.02.010

    Article  CAS  Google Scholar 

  • Estrada JM, Kraakman NJRB, Muñoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi:10.1021/es103478j

    Article  CAS  Google Scholar 

  • Estrada JM, Lebrero R, Quijano G et al (2015) Odour abatement technologies in WWTP: energetic and economic efficiency. In: Tsagarakis KP, Stamatelatou K (eds) Sewage Treatment Plants: economic evaluation of innovative technologies for energy efficiency. IWA Publishing, London, pp 163–187

    Google Scholar 

  • EUPO (2007) Directive 2004/42/CE of the European Parliament and the Council. In: Eur. Union Publ. Off. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:143:0087:0096:EN:PDF

  • Fam H, Daugulis AJ (2013) Two-phase partitioning bioreactors. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, UK, pp 185–205

    Chapter  Google Scholar 

  • Fazaelipoor MH, Shojaosadati SA (2002) The effect of silicone oil on biofiltration of hydrophobic compounds. Environ Prog 21:221–224. doi:10.1002/ep.670210410

    Article  CAS  Google Scholar 

  • Gabriel D, Deshusses MA (2003) Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ Prog 22:111–118. doi:10.1002/ep.670220213

    Article  CAS  Google Scholar 

  • Guieysse B, Cirne MDTG, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor. Appl Microbiol Biotechnol 56:796–802. doi:10.1007/s002530100706

    Article  CAS  Google Scholar 

  • Hansen N, Rindel K (2000) Bioscrubbing, an effective and economic solution to odour control at wastewater treatment plants. Water Sci Technol 41:155–164

    CAS  Google Scholar 

  • Harz M, Knoche M (2001) Droplet sizing using silicone oils. Crop Prot 20:489–498. doi:10.1016/S0261-2194(01)00014-X

    Article  Google Scholar 

  • Hashemi SF, Goharrizi AS, Fazaelipoor MH (2012) Two liquid-phase bubble column bioreactors for the removal of volatile organic compounds from air streams. Asia-Pacific J Chem Eng 7:442–447. doi:10.1002/apj.591

    Article  CAS  Google Scholar 

  • Hernández M, Muñoz R (2011) Long-term influence of the presence of a non-aqueous phase on the cell surface hydrophobicity of Pseudomonas in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 89:1573–1581. doi:10.1007/s00253-010-2975-7

    Article  Google Scholar 

  • Hernández M, Muñoz R, Daugulis AJ (2011a) Biodegradation of VOC mixtures of different hydrophobicities in two-phase partitioning bioreactors containing tailored polymer mixtures. J Chem Technol Biotechnol 86:138–144. doi:10.1002/jctb.2496

    Article  Google Scholar 

  • Hernández M, Quijano G, Muñoz R, Bordel S (2011b) Modeling of VOC mass transfer in two-liquid phase stirred tank, biotrickling filter and airlift reactors. Chem Eng J 172:961–969. doi:10.1016/j.cej.2011.07.008

    Article  Google Scholar 

  • Hernández M, Quijano G, Muñoz R (2012) Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors. Environ Sci Technol 46:4059–4066. doi:10.1021/es204144c

    Article  Google Scholar 

  • Hernández M, Quijano G, Thalasso F et al (2010) A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors. Biotechnol Bioeng 106:731–740. doi:10.1002/bit.22748

    Article  Google Scholar 

  • Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180. doi:10.1039/B513231B

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi:10.1016/j.envpol.2007.06.012

    Article  CAS  Google Scholar 

  • Kennes C, Abubackar HN, Veiga MC (2013) Biodegradation and bioconversion of volatile pollutants. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, pp 19–30

    Chapter  Google Scholar 

  • Kennes C, Thalasso F (1998) Review: waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319. doi:10.1002/(SICI)1097-4660(199808)72:4<303:AID-JCTB903>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2013) Introduction to air pollution. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, UK, pp 3–18

    Chapter  Google Scholar 

  • Khammar N, Malhautier L, Degrange V et al (2005) Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 98:476–490. doi:10.1111/j.1365-2672.2004.02474.x

    Article  CAS  Google Scholar 

  • Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. doi:10.1016/S0950-4230(00)00007-3

    Article  Google Scholar 

  • Kraakman NJR, Cesca J (2012) Evaluating odour control technology using reliability and sustainability criteria. Water 65–70, November

    Google Scholar 

  • Kraakman NJR, Rocha-Rios J, van Loosdrecht MCM (2011) Review of mass transfer aspects for biological gas treatment. Appl Microbiol Biotechnol 91:873–886. doi:10.1007/s00253-011-3365-5

    Article  CAS  Google Scholar 

  • Lebrero R, Bouchy L, Stuetz R, Muñoz R (2011) Odor assessment and management in wastewater treatment plants: a review. Crit Rev Environ Sci Technol 41:915–950. doi:10.1080/10643380903300000

    Article  Google Scholar 

  • Lebrero R, Hernández M, Quijano G, Muñoz R (2014) Hexane biodegradation in two-liquid phase biofilters operated with hydrophobic biomass: effect of the organic phase-packing media ratio and the irrigation rate. Chem Eng J 237:162–168. doi:10.1016/j.cej.2013.10.016

    Article  CAS  Google Scholar 

  • Lippmann M (1989) Health effects of ozone a critical review. JAPCA 39:672–695. doi:10.1080/08940630.1989.10466554

    Article  CAS  Google Scholar 

  • Littlejohns JV, Daugulis AJ (2009) A two-phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases. Biotechnol Bioeng 103:1077–1086. doi:10.1002/bit.22343

    Article  CAS  Google Scholar 

  • López JC, Quijano G, Pérez R, Muñoz R (2014) Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manage 146:116–123. doi:10.1016/j.jenvman.2014.06.026

    Article  Google Scholar 

  • MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805. doi:10.1016/j.procbio.2004.06.042

    Article  CAS  Google Scholar 

  • Malhautier L, Khammar N, Bayle S, Fanlo J-L (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22. doi:10.1007/s00253-005-1960-z

    Article  CAS  Google Scholar 

  • Melgarejo-Torres R, Castillo-Araiza CO, Dutta A et al (2015) Mathematical model of a three phase partitioning bioreactor for conversion of ketones using whole cells. Chem Eng J 260:765–775. doi:10.1016/j.cej.2014.08.097

    Article  CAS  Google Scholar 

  • Montes M, Daugulis AJ, Veiga MC, Kennes C (2011) Characterization of absorbent polymers for the removal of volatile hydrophobic pollutants from air. J Chem Technol Biotechnol 86:47–53. doi:10.1002/jctb.2517

    Article  CAS  Google Scholar 

  • Montes M, Veiga MC, Kennes C (2010) Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of alpha-pinene. Bioresour Technol 101:9493–9499. doi:10.1016/j.biortech.2010.07.101

    Article  CAS  Google Scholar 

  • Morrish JLE, Daugulis AJ (2008) Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid-liquid two-phase partitioning bioreactor. Biotechnol Bioeng 101:946–956. doi:10.1002/bit.21957

    Article  CAS  Google Scholar 

  • Muñoz R, Arriaga S, Hernández S et al (2006) Enhanced hexane biodegradation in a two phase partitioning bioreactor: overcoming pollutant transport limitations. Process Biochem 41:1614–1619. doi:10.1016/j.procbio.2006.03.007

    Article  Google Scholar 

  • Muñoz R, Chambaud M, Bordel S, Villaverde S (2008) A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating alpha-pinene. Appl Microbiol Biotechnol 79:33–41. doi:10.1007/s00253-008-1400-y

    Article  Google Scholar 

  • Muñoz R, Daugulis AJ, Hernández M, Quijano G (2012) Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnol Adv 30:1707–1720. doi:10.1016/j.biotechadv.2012.08.009

    Article  Google Scholar 

  • Muñoz R, Gan EIHH, Hernández M, Quijano G (2013) Hexane biodegradation in two-liquid phase bioreactors: High-performance operation based on the use of hydrophobic biomass. Biochem Eng J 70:9–16. doi:10.1016/j.bej.2012.09.009

    Article  Google Scholar 

  • Muñoz R, Villaverde S, Guieysse B, Revah S (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25:410–422. doi:10.1016/j.biotechadv.2007.03.005

    Article  Google Scholar 

  • Nielsen DR, Sask KN, McLellan PJ, Daugulis AJ (2006) Benzene vapor treatment using a two-phase partitioning bioscrubber: an improved steady-state protocol to enhance long-term operation. Bioprocess Biosyst Eng 29:229–240. doi:10.1007/s00449-006-0071-2

    Article  CAS  Google Scholar 

  • Noyola A, Morgan-Sagastume JM, López-Hernández JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Bio/Technol 5:93–114. doi:10.1007/s11157-005-2754-6

    Article  CAS  Google Scholar 

  • Ordaz A, López JC, Figueroa-González I et al (2014) Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry. Water Res 67C:46–54. doi:10.1016/j.watres.2014.08.054

    Article  Google Scholar 

  • Ostojic NL (1992) Activated sludge treatment for odor control. Biocycle 33:74

    CAS  Google Scholar 

  • Ottengraf SP, Van Den Oever AH (1983) Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol Bioeng 25:3089–3102. doi:10.1002/bit.260251222

    Article  CAS  Google Scholar 

  • Pérez MC, Alvarez-Hornos FJ, Portune K, Gabaldón C (2014) Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5773-9

    Google Scholar 

  • Popov VO, Bezborodov AM, Cavanagh M, Cross P (2004) Evaluation of industrial biotrickling filter at the flexographic printing facility. Environ Prog 23:39–44. doi:10.1002/ep.10005

    Article  CAS  Google Scholar 

  • Quijano G, Chávez-Avila R, Muñoz R et al (2010a) KLa measurement in two-phase partitioning bioreactors: new insights on potential errors at low power input. J Chem Technol Biotechnol 85:1407–1412. doi:10.1002/jctb.2460

    Article  CAS  Google Scholar 

  • Quijano G, Couvert A, Amrane A (2010b) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930. doi:10.1016/j.biortech.2010.06.161

    Article  CAS  Google Scholar 

  • Quijano G, Couvert A, Amrane A et al (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. doi:10.1016/j.ces.2011.01.047

    Article  CAS  Google Scholar 

  • Quijano G, Hernandez M, Thalasso F et al (2009a) Two-phase partitioning bioreactors in environmental biotechnology. Appl Microbiol Biotechnol 84:829–846. doi:10.1007/s00253-009-2158-6

    Article  CAS  Google Scholar 

  • Quijano G, Revah S, Gutiérrez-Rojas M et al (2009b) Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector. Process Biochem 44:619–624. doi:10.1016/j.procbio.2009.01.015

    Article  CAS  Google Scholar 

  • Quijano G, Hernandez M, Villaverde S et al (2010c) A step-forward in the characterization and potential applications of solid and liquid oxygen transfer vectors. Appl Microbiol Biotechnol 85:543–551. doi:10.1007/s00253-009-2146-x

    Article  CAS  Google Scholar 

  • Quijano G, Ordaz A, Muñoz R, Thalasso F (2010d) New insights on O2 uptake mechanisms in two-phase partitioning bioreactors. Biotechnol Lett 32:223–228. doi:10.1007/s10529-009-0146-7

    Article  CAS  Google Scholar 

  • Quijano G, Rocha-Ríos J, Hernández M et al (2010e) Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors. J Hazard Mater 175:1085–1089. doi:10.1016/j.jhazmat.2009.10.020

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi:10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Rene ER, Veiga MC, Kennes C (2013) Biofilters. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, pp 59–119

    Google Scholar 

  • Revah S, Morgan-Sagastume JM (2005) Biotechnology for odor and air pollution control. In: Shareefdeen Z, Singh A (eds) Biotechnology for odor and air pollution control. Springer, Berlin, pp 29–63

    Chapter  Google Scholar 

  • Rocha-Rios J, Bordel S, Hernández S, Revah S (2009) Methane degradation in two-phase partition bioreactors. Chem Eng J 152:289–292. doi:10.1016/j.cej.2009.04.028

    Article  CAS  Google Scholar 

  • Rocha-Rios J, Quijano G, Thalasso F et al (2011) Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. J Chem Technol Biotechnol 86:353–360. doi:10.1002/jctb.2523

    Article  CAS  Google Scholar 

  • Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. http://www.henrys-law.org/henry.pdf. Accessed 6 Nov 2014

  • Schnelle JKB, Brown CA (2001) Air pollution control technology handbook. Florida, Boca Raton

    Book  Google Scholar 

  • Stuetz RM, Gostelow P, Burgess JE (2001) Odour perception. In: Stuetz RM, Frechen FB (eds) Odours wastewater treat Meas. Model. Control. IWA Publishing, London, pp 1–13

    Google Scholar 

  • UNEP (2006) Screening Information Datasets (SIDS) for high volume chemicals. In: United Nations Environ. Program.—Chem. Branch. http://www.chem.unep.ch/irptc/sids/OECDSIDS/. Accessed 20 May 2003

  • USEPA (2015) US Environmental Protection Agency - Air Toxics Web Site. http://www.epa.gov/airtoxics/. Accessed 1 Mar 2015

  • Van Groenestijn JW, Lake ME (1999) Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases. Environ Prog 18:151–155. doi:10.1002/ep.670180310

    Article  Google Scholar 

  • Vuong M-D, Couvert A, Couriol C et al (2009) Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chem Eng J 150:426–430. doi:10.1016/j.cej.2009.01.027

    Article  CAS  Google Scholar 

  • Wagner M, Loy A, Nogueira R et al (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680. doi:10.1023/A:1020586312170

    Article  CAS  Google Scholar 

  • Witherspoon J, Easter C, Voigt R et al (2008) An odor control master planning approach to public outreach programs. Proceeding of 3rd IWA international conference of Odour VOCs. Meas. Regul. Control Tech. 2006:

    Google Scholar 

  • Wu XM, Apte MG, Maddalena R, Bennett DH (2011) Volatile organic compounds in small- and medium-sized commercial buildings in California. Environ Sci Technol 45:9075–9083. doi:10.1021/es202132u

    Article  CAS  Google Scholar 

  • Yeom SH, Daugulis AJ (2001) Development of a novel bioreactor system for treatment of gaseous benzene. Biotechnol Bioeng 72:156–165

    Article  CAS  Google Scholar 

  • Yeom SH, Daugulis AJ, Nielsen DR (2010) A strategic approach for the design and operation of two-phase partitioning bioscrubbers for the treatment of volatile organic compounds. Biotechnol Prog 26:1777–1786. doi:10.1002/btpr.481

    Article  CAS  Google Scholar 

  • Yoshino K, Schmidt WF (2014) Ion mobilities in poly-dimethylsiloxane silicone oils. IEEE international Conference on Liquids Dielectric Curran Associates, Inc., Bled, Slovenia, pp 123–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Quijano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Quijano, G., Miguel-Romera, J.A., Bonilla-Morte, L.M., Figueroa-González, I. (2017). HC-0B-05: Two-Phase Partitioning Bioreactors for Treatment of Volatile Hydrocarbons. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_7

Download citation

Publish with us

Policies and ethics