Skip to main content

Catalytic Hydro-Cracking of Bio-Oil to Bio-Fuel

  • Chapter
  • First Online:
Biodegradation and Bioconversion of Hydrocarbons

Abstract

Over the last hundred years, fossil fuels consumption has increased dramatically leading to a significant increase in greenhouse gas emissions, the depletion of natural reserves of fossil fuels and increase fuel production costs. Consequently, renewable and sustainable fuel sources such as bio-oil are receiving increased attention. In bio-oils, such as microalgae oil, triglycerides and fatty acids are sustainable resources with high energy densities that can be converted into liquid hydrocarbon fuels, efficiently. One of the efficient ways for bio-oil conversion to applicable fuels is catalytic hydro-cracking. This chapter presents research on the catalytic conversion of oleic acid (main component in all types of bio-oil) in bio-oil to liquid hydrocarbon fuels employing two catalysts. These catalysts include Ni-ZSM-5 and Ni-Zeolite β, which were prepared by impregnating cheap catalyst supports (ZSM-5 and Zeolite β) with Ni(NO3)2·6H2O calcined at a temperature of 500 °C. The catalysts were characterized using the Brunauer–Emmet–Teller Nitrogen Adsorption technique, scanning electron microscopy (SEM) and SEM–EDX (energy-dispersive X-ray spectroscopy) to analyse nickel impregnation and measure surface areas and pore size distribution. Conversion rates of oleic acid and product yields of liquid hydrocarbon fuels using each catalyst sample were determined via hydro-cracking reactions run at a temperature range of 300–450 °C and under a 30 bar pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjaye JD, Bakhshi NN (1995a) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenergy 8(3):131–149

    Article  CAS  Google Scholar 

  • Adjaye JD, Bakhshi NN (1995b) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: conversion over various catalysts. Fuel Process Technol 45(3):161–183

    Article  CAS  Google Scholar 

  • Anand M, Sinha AK (2012) Temperature-dependent reaction pathways for the anomalous hydrocracking of triglycerides in the presence of sulfided Co–Mo-catalyst. Bioresour Technol 126:148–155

    Article  CAS  Google Scholar 

  • Arend M et al (2011) Catalytic deoxygenation of oleic acid in continuous gas flow for the production of diesel-like hydrocarbons. Appl Catal A 399(1–2):198–204

    Article  CAS  Google Scholar 

  • Benson TJ et al (2008) Heterogeneous cracking of an unsaturated fatty acid and reaction intermediates on H+ ZSM-5 catalyst. CLEAN–Soil Air Water 36(8):652–656

    Article  CAS  Google Scholar 

  • Bezergianni S et al (2010a) Hydrotreating of waste cooking oil for biodiesel production. Part I: effect of temperature on product yields and heteroatom removal. Bioresour Technol 101(17):6651–6656

    Article  CAS  Google Scholar 

  • Bezergianni S et al (2010b) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101(19):7658–7660

    Article  CAS  Google Scholar 

  • Bezergianni S, Kalogianni A (2009) Hydrocracking of used cooking oil for biofuels production. Bioresour Technol 100(17):3927–3932

    Article  CAS  Google Scholar 

  • Bezergianni S et al (2009a) Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production. Bioresour Technol 100(12):3036–3042

    Article  CAS  Google Scholar 

  • Bezergianni S et al (2009b) Catalytic hydrocracking of fresh and used cooking oil. Ind Eng Chem Res 48(18):8402–8406

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brunauer S et al (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  • Bui VN et al (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101(3–4):239–245

    Article  CAS  Google Scholar 

  • Caspeta L et al (2013) The role of biofuels in the future energy supply. Energy Environ Sci 6(4):1077–1082

    Article  CAS  Google Scholar 

  • Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A 397(1–2):1–12

    Article  CAS  Google Scholar 

  • Chum H, et al (2011) Bioenergy. IPCC special report on renewable energy sources and climate change mitigation. In: O Edenhofer, R Pichs-Madruga, Y Sokona et al (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598

    Article  CAS  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Article  Google Scholar 

  • Díaz E et al (2007) Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131(1–3):65–71

    Article  Google Scholar 

  • Donnis B et al (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes. Top Catal 52(3):229–240

    Article  CAS  Google Scholar 

  • Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815

    Article  CAS  Google Scholar 

  • Figueroa JD et al (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2(1):9–20

    Article  CAS  Google Scholar 

  • Fisk CA et al (2009) Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A 358(2):150–156

    Article  CAS  Google Scholar 

  • Ford J et al (2012) Palladium catalysts for fatty acid deoxygenation: influence of the support and fatty acid chain length on decarboxylation kinetics. Top Catal 55(3–4):175–184

    Article  CAS  Google Scholar 

  • Forghani AA et al (2014) Mathematical modelling of a hydrocracking reactor for triglyceride conversion to biofuel: model establishment and validation. Int J Energy Res 38(12):1624–1634

    Article  CAS  Google Scholar 

  • Forghani AA, Lewis DM (2015) Hydro-conversion of oleic acid in bio-oil to liquid hydrocarbons: an experimental and modeling investigation. J Chem Technol Biotechnol doi:10.1002/jctb.4618

  • Fu J et al (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4(4):481–486

    Article  CAS  Google Scholar 

  • Grillet Y et al (1993) Evaluation of the n-nonane preadsorption method with a well characterized model adsorbent: Silicalite-l. Pure Appl Chem 65(10):2157–2167

    Article  CAS  Google Scholar 

  • Gusmão J et al (1989) Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulphided Ni–Mo/γ-Al2O3. Catal Today 5(4):533–544

    Article  Google Scholar 

  • Gutiérrez OY et al (2011) Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst. ChemCatChem 3(9):1480–1490

    Article  Google Scholar 

  • Huber GW et al (2007) Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A 329:120–129

    Article  CAS  Google Scholar 

  • Idem RO et al (1997) Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process Technol 51(1–2):101–125

    Article  CAS  Google Scholar 

  • Immer JG et al (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A 375(1):134–139

    Article  CAS  Google Scholar 

  • Immer JG, Lamb HH (2010) Fed-batch catalytic deoxygenation of free fatty acids. Energy Fuels 24(10):5291–5299

    Article  CAS  Google Scholar 

  • James GS, Jorge A (2007) Hydroprocessing chemistry. Hydroprocessing of heavy oils and residua. CRC Press, Boca Raton, pp 35–50

    Google Scholar 

  • Katikaneni SPR et al (1995) Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can J Chem Eng 73(4):484–497

    Article  CAS  Google Scholar 

  • Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A 372(2):199–208

    Article  Google Scholar 

  • Kubičková I et al (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106(1–4):197–200

    Article  Google Scholar 

  • Kumar R et al (2010) Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chem 12(12):2232–2239

    Article  CAS  Google Scholar 

  • Lestari S et al (2009a) Catalytic Deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuels 23(8):3842–3845

    Article  CAS  Google Scholar 

  • Lestari S et al (2009b) Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode. Catal Lett 130(1–2):48–51

    Article  CAS  Google Scholar 

  • Lestari S et al (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122(3–4):247–251

    Article  CAS  Google Scholar 

  • Leung A et al (1995) Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuels 9(5):913–920

    Article  CAS  Google Scholar 

  • Luque R et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564

    Article  CAS  Google Scholar 

  • Maier WF et al (1982) Hydrogenolysis, IV. Gas phase decarboxylation of carboxylic acids. Chem Ber 115(2):808–812

    Article  CAS  Google Scholar 

  • Mäki-Arvela P et al (2006) Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21(1):30–41

    Article  Google Scholar 

  • Metz B (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Milne TA et al (1990) Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective Zeolites. Biomass 21(3):219–232

    Article  CAS  Google Scholar 

  • Morgan T et al (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53(11–12):820–829

    Article  CAS  Google Scholar 

  • Morgan T et al (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189–190:346–355

    Article  Google Scholar 

  • Mortensen PM et al (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1–2):1–19

    Article  CAS  Google Scholar 

  • Nava R et al (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92(1–2):154–167

    Article  CAS  Google Scholar 

  • Ooi Y-S et al (2005) Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts. Energy Fuels 19(3):736–743

    Article  CAS  Google Scholar 

  • Peng B et al (2012) Inside back cover: towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem Int Ed 51(9):2253

    Article  Google Scholar 

  • Ping EW et al (2011) On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids. Appl Catal A 396(1–2):85–90

    Article  CAS  Google Scholar 

  • Ping EW et al (2010) Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous Mesoporous Mater 132(1–2):174–180

    Article  CAS  Google Scholar 

  • Pragya N et al (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  CAS  Google Scholar 

  • Saxena SK, Viswanadham N (2014) Selective production of green gasoline by catalytic conversion of Jatropha oil. Fuel Process Technol 119:158–165

    Article  CAS  Google Scholar 

  • Sharif Hossain A, Salleh A (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    Article  Google Scholar 

  • Sharma RK et al (2012) Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catal Today 198(1):314–320

    Article  CAS  Google Scholar 

  • Shi F et al (2012) Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations. RSC Adv 2(26):9727–9747

    Article  CAS  Google Scholar 

  • Šimáček P et al (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89(3):611–615

    Article  Google Scholar 

  • Simakova I et al (2009) Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl Catal A 355(1–2):100–108

    Article  CAS  Google Scholar 

  • Simakova IL et al (2008) Hydrogenation of vegetable oils over pd on nanocomposite carbon catalysts. Ind Eng Chem Res 47(19):7219–7225

    Article  CAS  Google Scholar 

  • Sing KSW (1968) Empirical method for analysis of adsorption isotherms. Chem Ind 44:1520–1521

    Google Scholar 

  • Smejkal Q et al (2009) Thermodynamic balance in reaction system of total vegetable oil hydrogenation. Chem Eng J 146(1):155–160

    CAS  Google Scholar 

  • Snåre M et al (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87(6):933–945

    Article  Google Scholar 

  • Snåre M et al (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45(16):5708–5715

    Article  Google Scholar 

  • Snåre M et al (2007) Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem Eng J 134(1–3):29–34

    Article  Google Scholar 

  • Study GGJ (2008) Global market study on Jatropha—final report. GEXSI Global Jatropha Study

    Google Scholar 

  • Sumathi S et al (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421

    Article  CAS  Google Scholar 

  • Tiwari R et al (2011) Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catal Commun 12(6):559–562

    Article  CAS  Google Scholar 

  • Topsøe H, et al (1996) Hydrotreating catalysis. Catalysis. In: J Anderson, M Boudart (ed) Springer, Berlin 11:1–269

    Google Scholar 

  • Twaiq FA et al (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various Zeolite catalysts. Ind Eng Chem Res 38(9):3230–3237

    Article  CAS  Google Scholar 

  • Twaiq FAA et al (2004) Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process Technol 85(11):1283–1300

    Article  CAS  Google Scholar 

  • Verma D et al (2011) Aviation fuel production from lipids by a single-step route using hierarchical mesoporous Zeolites. Energy Environ Sci 4(5):1667–1671

    Article  CAS  Google Scholar 

  • Vorrath S (2014) Algae oil test plant launched in South Australia. Renew Economy, 3 Nov 2014

    Google Scholar 

  • Wang S et al (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143

    Article  CAS  Google Scholar 

  • Wildschut J et al (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334

    Article  CAS  Google Scholar 

  • Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414

    Article  CAS  Google Scholar 

  • Yakovlev VA et al (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144(3–4):362–366

    Article  CAS  Google Scholar 

  • Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Jpn 36(4):361–375

    Article  CAS  Google Scholar 

  • Yang Y et al (2009) Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. Appl Catal A 360(2):242–249

    Article  CAS  Google Scholar 

  • Zhang X et al (2013) Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127:306–311

    Article  CAS  Google Scholar 

  • Zhao C et al (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15(7):1720–1739

    Article  CAS  Google Scholar 

  • Zhao C et al (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48(22):3987–3990

    Article  CAS  Google Scholar 

  • (2011) Algae 2020, vol 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ahmad Forghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Forghani, A.A., Lewis, D.M., Pendleton, P. (2017). Catalytic Hydro-Cracking of Bio-Oil to Bio-Fuel. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_6

Download citation

Publish with us

Policies and ethics