Skip to main content

Biodegradation of Benzene Under Anaerobic Condition

  • Chapter
  • First Online:
Book cover Biodegradation and Bioconversion of Hydrocarbons

Abstract

Global industrialization has largely expanded the edges of petroleum hydrocarbon (PHC) exploration. A large amount of various hydrocarbons are introduced into the environment during the stages of oil extraction, refinement, storage, transportation and disposal. Benzene is the parent hydrocarbon among the aromatic organic compounds which naturally occurs in petroleum products. It is a well-known carcinogenic organic compound. Its contamination is a widespread problem in soil as well as groundwater due to lack of oxygen in subsurface soils. Various physical and chemical methods are known to clean up aromatic hydrocarbons but they are too expensive and lead to adverse effects. Bioremediation technology has gained a great attention for the cleanup of hazardous aromatic compounds. There are advantages to rely on indigenous microorganisms rather than adding microbes to degrade waste. Emerging technologies have been developed in the field of environmental biotechnology for enhance degradation and complete removal of organic contaminant. This chapter reviews on recent progress in anaerobic degradation of benzene along with its sources, environmental fate and anaerobic mineralization pathways in the presence of different electron acceptors and also focuses on enhanced benzene degradation by enrichment and immobilization-based culture technique, factors affecting the rate of anaerobic degradation, role of enzymes and molecular tools to assess bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24(6):281–287

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation (2nd edition). Academic Press, San Diego, pp 335–365

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • An YJ (2004) toxicity of mixture of BTEX (benzene, toluene, ethylene, xylene) on the terrestrial plant (sorghum biocolor and cucumis staivus). Bull Environ Contam Toxicol 72:1006–1011

    Article  CAS  Google Scholar 

  • Anderson RT, Lovely D (1999) Naphthalene and benzene degradation under Fe (III) reducing condition in petroleum contaminated aquifer. Bioremediat J 3(2):121–135

    Article  CAS  Google Scholar 

  • Anderson RT, Lovely DR (2000) Anaerobic bioremediation of benzene under sulphate reducing condition in a petroleum contaminated aquifer. Environ Sci Technol 34:2261–2266

    Article  CAS  Google Scholar 

  • Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229

    Article  CAS  Google Scholar 

  • Arvin E, Engelsen P, Sebber U (2005) Biodegradation of gasoline compounds (BTEX) in a water works sand filter. Water Supply 4(5–6):29–33

    Google Scholar 

  • ATSDR (1992) Case Studies in Environmental Medicine, benzene toxicity, ATSDR Publication No.: ATSDR-HE-CS-2001-0003

    Google Scholar 

  • ATSDR (1997) Toxicological profile for benzene (update). US Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2000) Toxicological profile for toluene. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Interaction profile for benzene, toluene, ethylbenzene, and xylenes (BTEX). U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2007a) Toxicological profile for benzene. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2007b) Draft toxicological profile for ethylbenzene. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • ATSDR (2007c) Toxicological profile for xylene. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Bennett K (1999) In-situ treatment of soil contaminated by benzene (a BTEX compound) restoration and reclamation review. University of Minnesota, Department of Horticultural Science. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/59450

  • Bernauer U, Vieth B, Ellrich R (2000) CYP2E1 expression in bone marrow and its intra- and interspecies variability: approaches for a more reliable extrapolation from one species to another in the risk assessment of chemicals. Arch Toxicol 73(12):618–624

    Article  CAS  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (de-aromatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 234:921–933

    Article  CAS  Google Scholar 

  • Botton S, Parsons JR (2007) Degradation of BTX by dissimilatory iron-reducing cultures. Biodegradation 18:371–381

    Article  CAS  Google Scholar 

  • Burback B, Perry I (1993) Biodegradation and biotranslbrmation of groundwater pollutant mixtures by Mycobacterium Vacce. Appl Environ Microbiol 59:1025–1029

    CAS  Google Scholar 

  • Butler JE, Qiang He, Nevin KP, Zhili He, Zhou J, Lovley DR (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genom 8:180

    Article  CAS  Google Scholar 

  • Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of The Environment (1999) Canadian soil quality guidelines for the protection of environmental and human health: benzene. Canadian Environmental Quality Guidelines, Winnipeg

    Google Scholar 

  • Cape JN (2003) Effects of airborne volatile organic compounds on plants. Environ Pollut 122(1):145–157

    Article  CAS  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Academic Press, London, pp 85–105. ISBN 0-12-738446-4

    Book  Google Scholar 

  • cdn.intechopen.com

    Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechol 64:437–446

    Article  CAS  Google Scholar 

  • Chakraborty R, Coates JD (2005) Hydroxylation and carboxylation-two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol 71:5427–5432

    Article  CAS  Google Scholar 

  • Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas Strain RCB. Appl Environ Microbiol 71(12):8649–8655

    Article  CAS  Google Scholar 

  • Chang W, Um Y, Pulliam HTR (2005) Molecular characterization of anaerobic microbial communities from benzene-degrading sediments under methanogenic conditions. Biotechnol Prog 21(6):1789–1794

    Article  CAS  Google Scholar 

  • Chilcott RP (2007) Benzene toxicological overview. Health Protection Agency, CHAPD HQ, HPA, Version 2

    Google Scholar 

  • Cliona MM, Luoping Z, Martyn TS (2011) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2):240–252

    Google Scholar 

  • Coates JD, Anderson RT (2000) Emerging techniques for anaerobic bioremediation of contaminated environments. Trends Biotechnol 18(10):408–412

    Article  CAS  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  Google Scholar 

  • Coates JD, Chakraborty R, Mcinerney MJ (2002) Anaerobic benzene biodegradation—a new era. Res Microbiol 153:621–628

    Article  CAS  Google Scholar 

  • Cole GM (1994) Assessment and remediation of petroleum contaminated sites. CRC Press, Boca Raton

    Google Scholar 

  • Cox LA (1991) Biological basis of chemical carcinogenesis: insights from benzene. Risk Anal 11(3):453–464

    Article  Google Scholar 

  • Cozzarelli IM, Bekins BA, Eganhouse RP, Warren E, Essaid HI (2010) In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J Contam Hydrol 111:48–64

    Article  CAS  Google Scholar 

  • Cupples AM (2011) The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J Microbiol Methods 85(2):83–91

    Article  CAS  Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene–toluene–ethylbenzene–xylene–ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70(8):4720–4726

    Article  CAS  Google Scholar 

  • Daifullah AAM, Girgis BS (2003) Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf A Physicochem Eng Asp 214(1):181–193

    Article  CAS  Google Scholar 

  • Daviss B (2005) Growing pains for metabolomics. Scientist 19(8):25–28

    Google Scholar 

  • De Nardi IR, Varesche MB, Zaiat M, Foresti E (2002) Anaerobic degradation of BTEX in a packed-bed reactor. Water Sci Technol 45(10):175–180

    Google Scholar 

  • Deeb RA, Cohet IA (1999) Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodochrous. Biotechnol Bioeng 62:526–536

    Article  CAS  Google Scholar 

  • Delfino JJ, Miles CJ (1985) Aerobic and anaerobic degradation of organic contaminants in Florida ground water. In: Proceedings-Soil and Crop Science Society of Florida, vol 44, pp 9–14

    Google Scholar 

  • denr.sd.gov

    Google Scholar 

  • DH (1998) Annual report of the committees on toxicity mutagenicity carcinogenicity of chemicals in food, consumer products and the environment. In: Eighth joint annual report

    Google Scholar 

  • Dijkman N, Kromkamp J (2006) Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Mar Ecol Prog Ser 324:P113–P125

    Article  Google Scholar 

  • Doble M, Rollins K, Kumar A (2007) Green chemistry and engineering, 1st edn. Academic Press, London

    Google Scholar 

  • Dou J, Liu X, Hu Z (2008a) Substrate interactions during anaerobic biodegradation of BTEX by the mixed cultures under nitrate reducing conditions. J Hazard Mater 158:264–272

    Article  CAS  Google Scholar 

  • Dou J, Liu X, Hu Z, Deng D (2008b) Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J Hazard Mater 151:720–729

    Article  CAS  Google Scholar 

  • Dou J, Ding A, Liu X, Du Y, Deng D, Wang J (2010) Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci 22(5):709–715

    Article  CAS  Google Scholar 

  • Douglas OM, Colin GO (1994) Anaerobic fungi, biology, ecology and function, mycology series, vol 12, 1st edn. CRC Press, ISBN 0-8247-8948-2

    Google Scholar 

  • Dubinsky EA et al (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the deep-water horizon oil spill in the gulf of Mexico. Environ Sci Technol 47(19):10860–10867

    Article  CAS  Google Scholar 

  • Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS (1997) A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci USA 94(12):6484–6489

    Article  CAS  Google Scholar 

  • El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122

    Article  CAS  Google Scholar 

  • EPA (2002) Toxicological review of benzene (noncancer effects), in support of summary information on the integrated risk information system (IRIS), CAS No. 71-43-2,635/R-02/001F, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Estebar M, Mehdi MA, Poursafa P, Ghasemian M, Jaafarzadeh HHN, Fatehizadeh A (2012) Biodegradation of benzene–toluene–xylene in petrochemical industries wastewater through anaerobic sequencing biofilm batch reactor in bench scale. Int J Env Health Eng 2012(1):22

    Google Scholar 

  • Farhadian M (2008) Development of an effective bioremediation technology for volatile monoaromatics removal from contaminated water. Thesis, University Blaise Pascal, Clermont-Ferrand

    Google Scholar 

  • Farhadian M, Larroche C, Borghei M, Troquet J, Vachelard C (2006) Bioremediation of BTEX-contaminated groundwater through bioreactors. 4ème Colloque Franco-Roumain de Chimie Appliquée, Université Blaise Pascal, Clermont-Ferrand, France, p. 438

    Google Scholar 

  • Fellie EA, Sannasi P, Wong KK, Salmijah S, Kader J (2012) Tolerance and biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) by a metal acclimatized bacterial consortium culture. Res J Biotechnol 7(3):52–58

    Google Scholar 

  • Ferro A, Kennedy J, Doucette W, Nelson S, Jauregui G, McFarland B, Bugbee B (1996) Fate of benzene in soils planted with alfalfa: uptake, volatilization, and degradation. In: Phytoremediation f Soil and Water Contaminants Symposium, American Chemical Society, Washington, Dc 20036 (USA), pp 223–237

    Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbial 65:4630–4636

    CAS  Google Scholar 

  • Geissler JF, Harwood CS, Gibson J (1988) Purification and properties of benzoate-coenzyme a ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170:1709–1714

    Article  CAS  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microbiol Ecol 52:159–175

    Article  CAS  Google Scholar 

  • Gich FB, Amer E, Figueras JB, Abella CA, Balaguer MD, Poch M (2000) Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int Microbiol 3:103–106

    CAS  Google Scholar 

  • Gieg LM, Suflita JM (2005) Metabolic indicators of anaerobic hydrocarbon biodegradation in petroleum‐laden environments, In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch17

  • Grbic-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    CAS  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219

    Article  CAS  Google Scholar 

  • Gupta S, Pathak B, Fulekar MH (2014) Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds. Rev Environ Sci Biotechnol. doi:10.1007/s11157-014-9353-3

    Google Scholar 

  • Gupta S, Pathak B, Fulekar MH (2015) Biodegradation of benzene under anaerobic condition using enriched microbial culture. IJSRSET 1(4):207–215

    Google Scholar 

  • Gusmão VR, Martins TH, Chinalia FA, Sakamoto IK, Henriquethiemann O, Varesche MBA (2006) BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 41(6):1391–1400, 1359–5113

    Article  CAS  Google Scholar 

  • Haack SK, Fogarty LR, West TG, Alm EW, McGuire JT, Long DT (2004) Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ Microbiol 6:438–448

    Article  CAS  Google Scholar 

  • Hansch C, Leo AJ (1985) Medchem project, Issue No. 26. Pomona College, Claremont, CA

    Google Scholar 

  • Hartel U, Eckel E, Koch J, Fuchs G, Linder D, Buckel W (1993) Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch Microbiol 159:174–181

    Article  CAS  Google Scholar 

  • Harwood CS, Gibson J (1997) Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J Bacteriol 179:301–309

    Article  CAS  Google Scholar 

  • Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Article  CAS  Google Scholar 

  • Hendricks B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 55:262–273

    Article  CAS  Google Scholar 

  • Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP, Vazquez F (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20(3–4):517–523

    Article  CAS  Google Scholar 

  • Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon ferroglobus placidus. Appl Environ Microbiol 77(17):5926–5933

    Article  CAS  Google Scholar 

  • HSDB (Hazardous Substances Data Bank) (1997) National library of medicine, National toxicology program (via toxnet), Bethesda, MD

    Google Scholar 

  • Hu Z, Dou J, Liu X, Zheng X, Deng D (2007) Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors. J Environ Sci 19:1049–1054

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth the hard (and soft) facts. J Gen Microbiol 137:725–734

    Article  CAS  Google Scholar 

  • IPCS (1985) Environmental health criteria 52: toluene. International Programme on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • IPCS (1993) Environmental health criteria 150: benzene. International Programme on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • IPCS (1996) Environmental health criteria 186: ethylbenzene. International Programme on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • IPCS (1997) Environmental health criteria 190: xylenes. International Programme on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71(6):3355–3358

    Article  CAS  Google Scholar 

  • Jechalke S, Franchini AG, Bastida F, Bombach P, Rosell M, Seifert J, von Bergen M, Vogt C, Richnow HH (2013) Analysis of structure, function, and activity of a benzene-degrading microbial community. FEMS Microbiol Ecol 85:14–26

    Article  Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo–Fe–S enzyme. J Bacteriol 183:4536–4542

    Article  CAS  Google Scholar 

  • Joyce C (2002) Quantitative RT-PCR. A review of current methodologies. Methods Mol Biol 193:83–92

    Google Scholar 

  • Kanak A (2014) Benzene and beyond: mechanisms of novel anaerobic aromatic degradation pathways in Geobacter Daltonii. Dissertation, Georgia State University

    Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT (1989) Microbial degradation of benzene and toluene in groundwater. Bull Environ Contam Toxicol 43:505–510

    Article  CAS  Google Scholar 

  • Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) Stable isotope probing and isolation of anaerobic benzene degrading bacteria from gasoline contaminated groundwater. Appl Environ Microbiol 72:3586–3592

    Article  CAS  Google Scholar 

  • Kazumi J, Caldwell ME, Suflita JM, Lovley DR, Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31:813–818

    Article  CAS  Google Scholar 

  • Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Safety 4:26–38

    Article  CAS  Google Scholar 

  • Key KC (2013) Applications of Bio-Sep(RTM) beads and molecular biological tools: assessment and stimulation of the biodegradation of petroleum hydrocarbons and fuel oxygenates. Ph.D Thesis, The University of Tulsa, p 3558746

    Google Scholar 

  • Key KC, Sublette KL, Johannes TW, Ogles D, Baldwin B, Biernacki A (2013) Assessing BTEX biodegradation potential at a refinery using molecular biological tools. Groundwater Monitor Remediat 34(1 winter 2014):35–48

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71(2):95–122

    Article  Google Scholar 

  • Kim JM, Jeon CO (2009) Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium acinetobacter sp. b113. Curr Microbiol 58(1):70–75

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66:143–157

    Article  CAS  Google Scholar 

  • Koch J, Eisenreich W, Bacher A, Fuchs G (1993) Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 211:649–662

    Article  CAS  Google Scholar 

  • Kumar SS, Kumar MS, Siddavattam D, Karegoudar TB (2012) Generation of continuous packed bed reactor with PVA–alginate blend immobilized ochrobactrum sp. dgvk1 cells for effective removal of n, n-dimethylformamide from industrial effluents. J Hazard Mater 199–200:58–63, 22079508

    Article  CAS  Google Scholar 

  • Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1(7):643–653

    Article  CAS  Google Scholar 

  • Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by ana iron reducing enrichment culture. Environ Microbiol 10:1703–1712

    Article  CAS  Google Scholar 

  • Kuo C-W, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62(7):2317–2323

    CAS  Google Scholar 

  • Laban NA, Selesi D, Jobelius C, Meckenstock RU (2009) Anaerobic benzene degradation by gram positive sulfate reducing bacteria. FEMS Microbial Ecol 68:300–311

    Article  CAS  Google Scholar 

  • Laban A, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    Google Scholar 

  • Lee JF, Liao PM, Kuo CC, Yang HT, Chiou CT (2000) Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids. J Colloid Interface Sci 229(2):445–452

    Article  CAS  Google Scholar 

  • Leutwein C, Heider J (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and b-oxidation of the first intermediate, (R)-(M)-benzylsuccinate. Microbiology 145:3265–3271

    Article  CAS  Google Scholar 

  • Lin TF, Little JC, Nazaroff WW (1994) Transport and sorption of volatile organic compounds and water vapor within dry soil grains. Environ Sci Technol 28:322–330

    Article  CAS  Google Scholar 

  • Lovely DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifer. J Ind Microbiol Biotechnol 18:75–81

    Article  CAS  Google Scholar 

  • Lovely DR (2000) Anaerobic benzene degradation. Biodegradation 11:107–116

    Article  Google Scholar 

  • Lovern MR, Turner MJ, Meyer M (1997) Identification of benzene oxide as a product of benzene metabolism by mouse, rat and human liver microsomes. Carcinogenesis 18:1695–1700

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  Google Scholar 

  • Lu C, Lin M-R, Chu C (2002) Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal. Adv Environ Res 6:99–106

    Article  CAS  Google Scholar 

  • Mackay D, Leinonen PJ (1975) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ Sci Technol 9:1178–1180

    Article  CAS  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  Google Scholar 

  • Mark DM, Jerome JK, Ronald HO (1993) Metabolic diversity of aromatic hydrocarbon-degrading bacteria from petroleum-contaminated aquifer. Biodegradation 4:249–259

    Google Scholar 

  • Mathew A, Thanga VSG, Reshma JK (2010) Simultaneous phenol degradation and chromium (VI) reduction by bacterial isolates. Res J Biotechnol 5(1):46–49

    Google Scholar 

  • Medeiros AM, Bird MG, Witz G (1997) Potential biomarkers of benzene exposure. J Toxicol Environ Health 51:519–539

    CAS  Google Scholar 

  • Milton W, Tasneem AA, Killham K (1994) Anaerobic growth of fungal mycelium from soil particles onto nutrient-free silica gel. Mycol Res 98(7):761–762

    Article  Google Scholar 

  • mmbr.asm.org

    Google Scholar 

  • Mountfort DO, Kaspar HF (1986) Palladium mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas release during anaerobic cellulase degradation. Appl Environ Microbial 52:744–750

    CAS  Google Scholar 

  • Musat F, Widdel F (2008) Anaerobic degradation of benzene by a marine sulfate reducing enrichment culture and cell hybridization of dominant phylotype. Environ Microbial 10(1):10–19

    CAS  Google Scholar 

  • National Ambient Air Quality Standards (NAAQS) (2009) Central Pollution Control Board Notification. http://www.appcb.ap.nic.in/env-standards/cat_in_unitop/aaq_standards_09

  • NHMRC (2004) Australian drinking water guidelines. National Health and Medical Research Council and Natural Resource Management Ministerial Council, Canberra, Australia

    Google Scholar 

  • NTP (2005) Report on carcinogens, Eleventh edn. US Department of Health and Human Services, Public Health Service, National Toxicology Program, Atlanta

    Google Scholar 

  • Nyer EK (1998) Groundwater and soil remediation: practical methods and strategies. Sleeping Bear Press, Ann Arbor, pp 171–205

    Google Scholar 

  • Office for National Statistics (ONS) (2006) Environmental accounts. Springer, Heidelberg

    Google Scholar 

  • Oh YS, Shareefdeen Z, Baltzis BC, Bartha R (1994) Interactions between benzene, toluene and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng 44:533–538

    Article  CAS  Google Scholar 

  • OSHA (Occupational Safety and Health Administration) (1987) Benzene. U.S. Department of Labor, Occupational Safety and Health Administration. Code of Federal Regulations. 29 CFR 1910.1028

    Google Scholar 

  • Pardieck D et al (1992) Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. J Contam Hydrol 9:221–242

    Article  CAS  Google Scholar 

  • Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, Da Silva MLB, Alvarez PJ, Suflita JM (2009) Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site. Microbial Biotechnol 2(2):202–212

    Article  CAS  Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enz Res 475193:7

    Google Scholar 

  • Phelps CD, Zhang X, Young LY (2001a) Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol 3(9):600–603

    Article  CAS  Google Scholar 

  • Phelps CD, Zhang X, Young LY (2001b) Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol 3:600–603

    Article  CAS  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  • Piero L, MN D’Errico, Fustinoni S, Drago I, Barbieri A, Sabatini L, Carrieri M, Apostoli P, Soleo L (2011) Assessment of environmental exposure to benzene: traditional and new biomarkers of internal dose. In: Popovic D (ed) Air quality-models and applications. ISBN: 978-953-307-307-1

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell C (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649

    Article  CAS  Google Scholar 

  • Ranck JM, Bowman RS, Weeber JL, Katz LE, Sullivan EJ (2005) BTEX removal from produced water using surfactant-modified zeolite. J Environ Eng 131(3):434–442

    Article  CAS  Google Scholar 

  • Ribeiro R, De Nardi IR, Fernandes BS, Foresti E, Zaiat M (2013) BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions. Biodegradation 2:269–278

    Article  CAS  Google Scholar 

  • Ritter L, Solomon K, Sibley P, Hall K, Keen P, Mattu G (2002) Sources, pathways and relative risks of contaminants in surface water and groundwater: a perspective prepared for the walkerton inquiry. J Toxicol Environ Health Part A 65:1–142

    Article  CAS  Google Scholar 

  • Robledo-Ort JR, Ram Irez-Arreola DE, Erez-Fonseca AAP, Omez CG, Gonz Alez-Reynoso O, Ramos-Quirarte J (2011) Benzene, toluene, and o-xylene degradation by free and immobilized p. putida f1 of postconsumer agave-fiber polymer foamed composites. Int Biodeteriorat Biodegrad 65:539–546

    Article  CAS  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65(7):3056–3063

    CAS  Google Scholar 

  • Rosenstock L, Cullen MR, Brodkin CA, Redlich CA (2004) Textbook of clinical occupational and environmental medicine, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  • Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  CAS  Google Scholar 

  • Sabourin PJ, Chen BT, Lucier G et al (1987) Effect of dose on the absorption and excretion of [14C]benzene administered orally or by inhalation in rats and mice. Toxicol Appl Pharmacol 87:325–336

    Article  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2005) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352

    Article  CAS  Google Scholar 

  • Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108(6):501–507

    Article  CAS  Google Scholar 

  • Sardessai Y, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  Google Scholar 

  • Scheunert I, Topp E, Schmitzer J (1985) Formation and fate of bound residues on [14C] benzene and [14C] chlorobenzenes in soil and plants. Ecotox Environ Saf 9:159–170

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schühle K, Gescher J, Feil U, Paul M, Jahn M, Schägger H, Fuchs G, Georg Fuchs Mikrobiologie, Institut FüR Biologie Ii, UniversitäT Freiburg, Freiburg, Zentrum (2003) Benzoate-coenzyme a ligase from thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. J Bacteriol 185(16):4920–4929

    Article  CAS  Google Scholar 

  • Seagren EA, Becker JG (2002) Review of natural attenuation of BTEX and MTBE in Groundwater. Pract Period Hazard Toxic Radioact Waste Manag 6(3):156–172

    Google Scholar 

  • Senthil Kumar M et al (2013) Quantification of benzene in groundwater sources and risk analysis in a popular South Indian Pilgrimage City—a GIS based approach. Arabian J Chem. doi:10.1016/j.arabjc.2013.09.022

    Google Scholar 

  • Shen G, Lu Y, Hong J (2006) Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicol Environ Saf 65:474–480

    Article  CAS  Google Scholar 

  • Shim H, Yang ST (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 2267(2–3):99–112

    Article  Google Scholar 

  • Shoun H, Tanimoto T (1991) Denitrification by the fungus fusarium oxysporum and involvement of cytochrome p-450 in the respiratory nitrite reduction. J Biol Chem 266(17):11078–11082

    CAS  Google Scholar 

  • Smith MT, Yager JW, Steinmetz K (1989) Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect 82:23–29

    Article  CAS  Google Scholar 

  • Stupperich E (1993) Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev 12:349–366

    Article  CAS  Google Scholar 

  • Tabak HH, Cooke WB (1968) Growth and metabolism of fungi in an atmosphere of nitrogen. Mycologia 60(1):115–140

    Article  CAS  Google Scholar 

  • Takaya N (2009) Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. Biosci Biotechnol Biochem 73(1):1–8

    Article  CAS  Google Scholar 

  • Tan NC, Van Doesburg W, Langenhoff AA, Stams AJ (2006) Benzene degradation coupled with chlorate reduction in a soil column study. Biodegradation 17:11–17

    Article  CAS  Google Scholar 

  • Taylor BF, Campbell WL, Chinoy I (1970) Anaerobic degradation of benzene nucleus by facultatively anaerobic microorganisms. J Bacteriol 102:430–437

    CAS  Google Scholar 

  • Tiburtius ER, Peralta-Zamora P, Emmel A (2005) Treatment of gasoline-contaminated waters by advanced oxidation processes. J Hazard Mater 126(1–3):86–90

    Article  CAS  Google Scholar 

  • Tonouchi A (2010) Isolation and characterization of a novel facultative anaerobic filamentous fungus from Japanese rice field soil. Int J Microbiol. Article ID 571383, p 9, 571383

    Google Scholar 

  • Topp E, Scheunert I, Korte F (1989) Kinetics of the uptake of 14C-labeled chlorinated benzene from soil by plants. Ecotox Environ Saf 17:157–166

    Article  CAS  Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29(4):442–452

    Article  CAS  Google Scholar 

  • Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegrad 64:447–451

    Article  CAS  Google Scholar 

  • Uchrin CG, Mangels G (1986) Chloroform sorption to new jersey coastal plain ground water aquifer solids. Environ Toxicol Chem 5(40):339–343

    Article  CAS  Google Scholar 

  • Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5(2):92–102

    Article  CAS  Google Scholar 

  • Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13c6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691

    Article  CAS  Google Scholar 

  • USEPA (2005) National Emissions Inventory. http://www.epa.gov/ttn/ chief/net/ 2005inventory

  • USEPA (US Environmental Protection Agency) (2006) Edition of the drinking water standards and health advisories. EPA 822-r-06-013, Washington DC

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  CAS  Google Scholar 

  • Vangnai AS, La Sayavedra-Soto, Arp DJ (2002) Roles for the two 1-butanol dehydrogenases of pseudomonas butanovora in butane and 1-butanol metabolism. J Bacteriol 184:4343–4350

    Article  CAS  Google Scholar 

  • Villatoro-Monzon WR, Mesta-Howard AM, Razo- Flores E (2003) Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sci Technol 48:125–131

    CAS  Google Scholar 

  • Villatoro-Monzón WR, Morales-Ibarria MG, Velázquez EK, Ramírez-Saad H, Razo-Flores E (2008) Benzene biodegradation under anaerobic conditions coupled with metal oxides reduction. Water Air Soil Pollut 192:165–172

    Article  CAS  Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202

    CAS  Google Scholar 

  • Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microbial Biotechnol 4(6):710–724

    Article  Google Scholar 

  • Wada H (1976) Decomposition processes of plant debrises in submerged soil—part 1. J Sci Soil Manure Japan 47(10):458–462

    Google Scholar 

  • Wallace S, Kadlec R (2005) BTEX degradation in a cold-climate wetland system. Water Sci Technol 51(9):165–171

    CAS  Google Scholar 

  • Watts JE, Wu Q, Schreier SB, May HD, Sowers KR (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3:710–719

    Article  CAS  Google Scholar 

  • Weelink SAB (2008) Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria. Ph.D thesis, ISBN 978-90-8585-239-1

    Google Scholar 

  • Weelink SAB, Tan NCG, Ten Broeke H, Van Doesburg W, Langenhoff AAM, Gerritse J, Stams AJM (2007) Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community. FEMS Microbiol Ecol 60(2):312–321 (Epub 26)

    Article  CAS  Google Scholar 

  • Weelink SAB, Tan NCG, Ten Broeke H, Van Den Kieboom C, Van Doesburg W, Langenhoff AAM, Gerritse J, Junca H, Stams AJM (2008) Isolation and characterization of alicycliphilus denitrificans strain bc, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74:216672–216681

    Article  CAS  Google Scholar 

  • Weelink SAB, Van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9:359–385

    Article  CAS  Google Scholar 

  • Weiner JM, Lovley DR (1998) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64:1937–1939

    CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeteriorat Biodegrad 17–40

    Google Scholar 

  • WHO (2000) Benzene, Chapter 5.2, air quality guidelines, second edition. WHO Regional Office for Europe, Copenhagen, Denmark

    Google Scholar 

  • WHO (2008) Guidelines for drinking water quality. Third Edition incorporating the first and second addenda. World Health Organization, Geneva

    Google Scholar 

  • Wick LY, McNeill K, Rojo M, Medilanski E, Gschwend PM (2000) Fate of benzene in a stratified lake receiving contaminated groundwater discharges from a superfund site. Environ Sci Technol 34(20):4354–4362

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  Google Scholar 

  • Wood TM, Wilson CA, Mccrare SI, Joblin KN (1986) A Highly active extracellular cellulase from the anaerobic rumen fungus neocallimastix frontalis. FEMS Microbial Lett 34:37–40

    Article  CAS  Google Scholar 

  • wrhsrc.oregonstate.edu

    Google Scholar 

  • www.atsdr.cdc.gov

  • www.inchem.org

  • www.ncbi.nlm.nih.gov

  • www.bren.ucsb.edu

  • www.hpa.org.uk

  • www.environment.gov.ab.ca

  • www.ons.gov.uk

  • Yardley-Jones A, Anderson D, Parke DV (1991) The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. Br J Ind Med 48(7):437–444

    CAS  Google Scholar 

  • Yeom SH, Yoo YJ (1997) Overcoming the inhibition effects of metal ions the degradation of benzene and toluene by Alcaligenes Xylosoxidans Y234. Korean J Chem Eng 14(3):204–208

    Article  CAS  Google Scholar 

  • Yuki K, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 3586–3592

    Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B (2009) Metagenomics—an advanced approach for non-cultivable micro-organisms. Biotechnol Mol Biol Rev 4(3):49–54

    CAS  Google Scholar 

  • Zhang L-S, Wu W-Z, Wang J-L (2007) Immobilization of activated sludge us- ing improved polyvinyl alcohol (PVA) gel. J Environ Sci (China) 19:1293–1297

    Article  CAS  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020

    Article  CAS  Google Scholar 

  • Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78(23):8304–8310

    Article  CAS  Google Scholar 

  • Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in geobacter metallireducens. Front Microbiol 5:245

    Google Scholar 

  • Zhou J, Thompson DK (2002) Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol 13:204–207

    Article  CAS  Google Scholar 

  • Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277(3):1892–1896

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawana Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pathak, B., Gupta, S., Fulekar, M.H. (2017). Biodegradation of Benzene Under Anaerobic Condition. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_5

Download citation

Publish with us

Policies and ethics